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ABSTRACT

Brain mapping using magnetic resonance imaging (MRI) is
traditionally performed using voxel-wise statistical hypothe-
sis testing. Such mass-univariate approach ignores subtle spa-
tial interactions. The searchlight method, in contrast, uses a
multivariate predictive model in each local neighborhood in
brain space—named the searchlight. The classification per-
formance is then reported at the center of the searchlight to
build an information map. We extend the searchlight tech-
nique to take into account additional voxels that can be con-
sidered as a meaningful network; i.e., we define a criterion
of multivariate connectivity to identify voxels that are statis-
tically dependent on those in searchlight. We coin the term
“connectivity searchlight” for the extended searchlight. Using
simulated data, we empirically show improved performance
for brain regions with low signal-to-noise ratio and recovery
of underlying network structures that would otherwise remain
hidden. The proposed methodology is general and can be ap-
plied to both functional and structural data. We also demon-
strate promising results on a well-known fMRI dataset where
images of different categories are presented.

Index Terms— Magnetic resonance imaging, pattern
recognition, multivariate analysis, functional connectivity

1. INTRODUCTION

Magnetic resonance imaging (MRI) has opened unprece-
dented ways to explore brain structure and function non-
invasively. Traditionally, univariate statistical methods are
used to analyze the data voxel-by-voxel. However, it has been
shown that distributed patterns can carry a lot of information,
such as about different image categories [1]. Recent advances
have applied tools from machine learning to perform multi-
variate pattern analysis (MVPA), commonly termed ‘“brain
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decoding” or “mind reading”, as the condition is inferred
from the data [2, 3].

One elegant technique for brain decoding is the so-called
searchlight method [4]. For each voxel, a local neighborhood
is considered (e.g., sphere or cube) and these voxels’ values
are used for classification or regression. The performance is
then reported at the center of the searchlight to build an infor-
mation map; i.e., it reflects the amount of information that is
available in the searchlight to predict the condition. This way,
subtle local interactions between the voxels can be exploited
successfully. However, since the searchlight is local by con-
struction, it heavily relies on the principle of functional seg-
regation; i.e., local processing and specialization of the brain.

Recently, there has been increasing interest of the com-
munity for functional and structural connectivity [5], and net-
works derived from such measures. When combined with pat-
tern recognition, it has been shown that functional connectiv-
ity between atlas-based regions-of-interest (ROIs) can decode
cognitive state [6, 7] and patient status [8]. This motivated
us to look for an extension of the searchlight method such
that information can be decoded from a network of which the
searchlight is part. To the best of our knowledge, such an ex-
tension has not been proposed before. Only in recent work,
voxels in a limited set of ROIs where combined to decode
sensory-to-motor mapping based on connectivity between the
ROIs [9].

We propose two new elements to extend the original
searchlight. First, we define a criterion of connectivity to
identify voxels in the brain that are statistically dependent on
the searchlight; our criterion is multivariate and goes beyond
traditional correlation measures to quantify (functional) con-
nectivity!'. Since MRI data can have global confounds (e.g.,
motion in functional MRI), we also provide the possibility to
include nuisance factors that can explain background signal.
We then create the “connectivity searchlight” by extending
the searchlight with connected voxels, defining a network re-
lated to the searchlight that is fed into the classifier. To show

IWe do not discuss effective connectivity here, which can reveal causal
relationships based on predefined models and richer data [5].



the potential of this method, we demonstrate its feasibility on
both simulated and experimental MRI data, and compare it
against the conventional searchlight.

2. SEARCHLIGHT FOLLOWS CONNECTIVITY

2.1. Conventional Searchlight Approach

Let us introduce the data structure. We are given K brain
scans, which could be functional scans for stimulus-induced
activity or structural scans for multiple subjects. Each volu-
metric scan has a size of V; x V5 x V3 voxels, which can be
collapsed into a vector of size V' = V;VoV3. The full data
matrix D has then size K x V, where the scans have been ar-
ranged row-wise. We also have a vector y € NX*1 that con-
tains the condition of each scan. The searchlight approach is
then using a 3-D sliding window that contains a local neigh-
borhood S; centered around each voxel <. The shape and size
of the searchlight are parameters to be defined; e.g., we can
use the commonly deployed cubic searchlight which includes
L = (2m+1)3 = |S;| voxels when m is the number of neigh-
bors is each dimension. We denote D, the subset of voxels
in the data matrix that are included in the searchlight. The
purpose is to predict the conditions of the scans y by using
the searchlight voxels’ values as features. One can then build
an “information map” by reporting the performance of each
searchlight S; in the center voxel i [4]. Since this is done in
within the cross-validation framework, the data matrix is split
each time into Dywin s, (K’ X L) and Dyey s, (K" % L).

2.2. Multivariate Connectivity

The searchlight is using only information from the local
neighborhood §;, thus exploiting only local specialization of
the brain. However, the brain is also a globally integrated sys-
tem, which means that distant brain regions operate in brain
networks. To extend the searchlight with “connected” voxels,
we propose the following criterion for multivariate connec-
tivity. Notice that connectivity can be both functional (e.g.,
timecourses are correlated) or morphometric (e.g., different
anatomical features varies similarly in subjects).

Let us consider the searchlight S;. We define multivariate
connectivity between the searchlight and other voxels as the
ability of searchlight data to explain non-searchlight voxels.
More specifically, we create a general linear model (GLM)
that consists of the searchlight data Dy, s, as regressors to
explain the signal at any other voxel j. Since MR data is
often contaminated by strong background signals, we also add
nuisance regressors that are extracted as the first Ly principal
components Uy, of the full data matrix Dyin. The K’ x (L+
L) design matrix for voxel ¢ then becomes

Xi = [Dtrain,Si
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which leads to the following GLM:
d¥ = X,;8 + n;, 2

where ,BEJ ) is the (L+ L) x 1 parameter vector of the search-
light centered at voxel ¢ to explain data at 7, and n; is assumed
additive zero-mean and independent Gaussian noise. Using
the ordinary least-squares solution, we can find the estimate
and the residuals as

dV = X, (XX;)"'X]dY, (3)
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To test the significance of the explained signal by the GLM,
we compute the ¢-statistic for the contrast
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which follows a Student t-distribution with K’ — L — Lg
degrees-of-freedom under the null hypothesis Hq: E [CT,BEJ )] =
0. We define the set of voxels C; connected with the search-
light S; as those that survive the thresholding |t§J )| > T,
where T is the threshold for a-level 0.05/(V — L), which is
Bonferroni corrected for the number of voxels to be tested.

2.3. Extending the Searchlight

Based on the outcome of the multivariate connectivity crite-
rion, we construct the “connectivity searchlight” as the union
8! = S§;UC;. InFig. 1, we illustrate the principle of extending
the searchlight with connected voxels. Given the feature vec-
tors Dtrain,sg, we learn a support vector classifier (SVC) that
should predict yirin. The performance on the test data Dieg s
is then reported in the information map for the central voxel
of each searchlight.

3. RESULTS

3.1. Simulated Data

We simulated a noisy dataset with known underlying “net-
works” of simultaneously active regions for two different con-
ditions. In particular, our dataset consists of volumes of 64 x
52 x 3 voxels. In Fig. 2a, we show the labeled ground truth
for the central slice; all three slices are identical. In the first
condition, the left eye, upper lip, and the nose are “active”. In
the second condition, the right eye, lower lip, and the same
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Fig. 2: (a) The ground truth of the synthetic data where red and blue regions carry the signal for the two conditions, respectively;
while the cyan region has the signal for both. (b) Two example trials for each condition. (c) ¢-map for the searchlight positioned
in the left eye (indicated by the crosshair). (d) Information maps for searchlight and connectivity searchlight, respectively.

Fig. 1: Principle of connectivity searchlight. The cube rep-
resents the initial searchlight around the central voxel. Using
regression, we extend the searchlight with other voxels that
have similar signal content.

nose are active. There is a gradient of weak to strong activity
on the lips. The volumes I; (x) and I>(x) indicate the activity
strength for both conditions, respectively. We then generate
K =100 trials as

K /2 times K /2 times
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where 9§ is the Kronecker delta, by, is the baseline signal (i.e.,
by = 1, by = —1), and n(-; o) are Gaussian noise variables
with zero mean and standard deviation o; we have chosen
os = o1 = o092 = 0.8. Notice that the signal variations
br. + ny for condition k also contain “randomness”, which
is consistent in the corresponding regions I; though. In
Figs. 2b, we show two representative scans for the two con-
ditions. We selected the searchlight to be a 3 x 3 x 3 cube,
we only process the central slice for easier visualization. The
training set Dy, contains half of the trials (i.e., 25) for each
condition. In Fig. 2¢c, we show the statistical map of ¢-values
for multivariate connectivity when the searchlight is posi-
tioned in the middle of the left eye. Clearly, the “network”
of regions with similar activity for condition 1 are revealed
with high significance (i.e., threshold 7' = 4.4 Bonferroni-
corrected at 5%). The connectivity searchlight includes the

data from all voxels that survive this thresholding procedure.
In Figs. 2d, we show the information maps obtained when
using the conventional searchlight and connectivity search-
light, respectively. In particular, we report the classification
performance at the center of each searchlight. The conven-
tional searchlight obtains satisfactory performance from local
neighborhoods with strong signal-to-noise ratio (e.g., the eyes
and the high-activity parts of the mouths). The connectivity
searchlight is able to improve on these results by (1) better
classification performance in many regions; (2) including
considerably more regions with low signal (e.g. low-activity
parts of lips); (3) including regions that are connected (i.e.,
same activity variations), but that are not informative for the
classification, such as the nose.

3.2. Experimental fMRI Data

We also tested our method on a subset of the well-known
Haxby dataset [1]. In particular, we took data for one sub-
ject where images of houses and faces were shown, in to-
tal 216 scans are available. The original volumes have size
53x63x 46, but we limited ourselves to the central axial slices
22,23, and 24. The data was split in half between training and
testing. The same cubic searchlight as before was used. In
Fig. 3a, we show the t-maps for two different positions of the
searchlight (indicated with by the blue crosshair). On the left,
the searchlight is located in the auditory cortex, which is not
an informative region for the task at hand. The connectivity
searchlight only slightly extends its spatial neighborhood. On
the right, the searchlight is located in the anterior cingulate
cortex, which is a high-level cognitive region. The connectiv-
ity searchlight now includes the core of the caudate and parts
of visual cortex in the occipital lobe. In Fig. 3b, the classi-
fication performance is reported for the central voxel of the
searchlight. On the left, as expected the conventional search-
light is most informative in the visual cortex. On the right,
the connectivity searchlight performs very well for different
brain regions, including a larger part of the visual cortex, left
insula, and anterior cingulate cortex. The (spatial) average
classification performance is 66% and 86%, respectively.
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Fig. 3: Results for the Haxby dataset (faces versus houses).
(a) Connectivity map (t-value) for two different locations of
the searchlight indicated by the blue crosshairs. (b) Compar-
ison between information maps for conventional searchlight
(left) and connectivity searchlight (right).

4. DISCUSSION

The searchlight is a powerful technique that allows exploit-
ing multivariate information locally. The main contribution
of our approach is to extend the searchlight with regions that
form a network according to our criterion of multivariate con-
nectivity; i.e., voxels in the searchlight that explain the signal
elsewhere with high significance.

As the connectivity searchlight contains more voxels than
the conventional searchlight, it is not surprising that clas-
sification performance is improved since more voxels with
high signal-to-noise are included. However, it is important to
note that the connectivity criterion is not necessarily related
to discriminative features. Such an example was shown in
the nose region of the simulated dataset: since the signal
was (equally) shared for both conditions, these voxels cannot
contribute successfully to the classification task as they carry
no discriminative information. Still they are included in the
connectivity searchlight as they are part of the network for
each condition and it might be important for the neuroscien-
tist to have a picture of the full network at work. In fact, the
main goal of our method is to reveal network structures in a
more meaningful way.

The shape and size of the searchlight are parameters that

need to be selected. Based on preliminary experiments, we
observed that the multivariate connectivity criterion locally
extends searchlight with “important” neighboring voxels, thus
the settings of these parameters might be less critical.

Controlling the influence of global confounds is an impor-
tant issue that needs to be dealt with, especially for functional
data. Here we propose to include nuisance covariates in the
GLM from whole-brain principal component analysis. There
is an interesting link with sparse multivariate autoregression
models to build information flow models of the brain [10,11].
We plan to deepen this link in future work.

5. CONCLUSION

We have introduced a connectivity-based extension of the
searchlight method, which can be applied to both functional
and structural MRI data. Preliminary results on simulated and
real fMRI data demonstrate the feasibility of the approach and
its potential to reveal networks of the brain.
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