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ABSTRACT

Functional connectivity analysis of fMRI data can re-
veal synchronized activity between anatomically distinct
brain regions. Here, we exploit the characteristic connec-
tivity graphs of task and resting epochs to perform classi-
fication between these conditions. Our approach is based
on ensembles of decision trees, which combine power-
ful discriminative ability with interpretability of results.
This makes it possible to extract discriminative graphs
that represent a subset of the connections that distin-
guish best between the experimental conditions. Our
experimental results also show that the method can be
applied for group-level brain decoding.

Index Terms— fMRI, brain decoding, functional
connectivity, graphs, decision tree

1. INTRODUCTION

Functional magnetic resonance imaging (fMRI) has
opened an intriguing window on brain function. Tradi-
tionally, univariate statistical analysis is applied to assess
the activity of each voxel induced by the stimulation
paradigm. Recently, multivariate pattern analysis—
commonly termed “brain decoding”—has allowed to
exploit more subtle interactions between voxels’ inten-
sities [1, 2]. Basically, a classifier is learned (at the
individual subject level) for selected voxels and then
tested on the unseen data.

There is also an increasing interest of the neuroscience
community for resting state; i.e., brain activity when
the subject is relaxing and letting his thoughts wan-
der around. Spatially coherent spontaneous fluctuations
of the blood-oxygen-level dependent (BOLD) signal al-
low the identification of large-scale cortical networks,
among which the default-mode network [3]. The study
of resting-state networks mostly relies on seed-voxel cor-
relation [4, 5] and source separation such as independent
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component analysis [6, 7]. More recently, Achard et al.
studied the network properties of the undirected graph
obtained from temporal correlation matrices between dif-
ferent brain regions [8].

Here, we bring together brain decoding techniques
and graph representations based on functional connec-
tivity measures. In particular, we compare functional
connectivity from multiple subjects and between differ-
ent brain states using pattern recognition. We adapt
decision-tree classification to unveal a discriminative net-
work. This approach also allows to give relevant visual
feedback to the neuroscientist about which connections
are most discriminative. As a proof of concept, we con-
sider fMRI data from a block-based paradigm with long
resting periods. We show that the graph representations
of stimulation versus rest reflect the distinct nature of
both states at the group level.

The paper is organized as follows. In Sect. 2, we
describe the complete data processing pipeline that leads
to the classification of connectivity graphs. In Sect. 3, we
detail the experimental setup and discuss the results.

2. CLASSIFYING CONNECTIVITY GRAPHS

2.1. Timecourse preprocessing

After realignment of the functional volumes using SPM51,
we use the IBASPM toolbox [9, 10] to build an individual
brain atlas (based on the structural MRI) that contained
M = 90 anatomical regions. We then obtain spatially-
averaged timecourses corresponding to these regions in
the functional space. For N repetitions (which can be
intra- or inter-subject, in our case N is the number of
subjects) and C conditions, we obtain the matrix

X : M × T ×N × C,

that contains M · N · C timecourses of length T . We
denote the submatrixXn,c : M×T for theM timecourses
of subject n and condition c.

The timecourses are then decomposed using the (re-
dundant) discrete wavelet transform (DWT) along the
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temporal dimension. This results into J matrices X(i),
i = 1, . . . , J that reflect the regional brain activities at
different temporal scales. We used orthogonal Battle-
Lemarié wavelets (fourth order).

2.2. Functional connectivity graphs

We use pairwise Pearson correlation coefficients to form

the correlation matrix R
(i)
n,c = E[X

(i)
n,cX

(i)
n,c

T ] : M × M ,
where the temporal detrending is provided by the van-
ishing moments of the wavelet decomposition.

We now consider the brain regions as a set of vertices
V and the correlation coefficients as weights on the set
of edges E, leading to an undirected complete weighted
graph G = (V,E). The weighted graph adjacency matrix

A
(i)
n,c can be defined as A

(i)
n,c = R

(i)
n,c − I.

The intra-condition variability of these graphs is
usually quite high. Therefore, we follow the statistical
thresholding procedure proposed by Achard et al. [8];
i.e., we construct a mask based on the false discovery
rate (FDR) procedure at significance level α of the ad-
jacency matrices of multiple subjects. Since our goal
is to perform classification, it is important to exclude
the graph to classify for the construction of this mask.
We propose to intersect the masks that preserve edges
significant for each condition. This procedure leads to

thresholded adjacency matrices A
′(i)
n,c where significant

edges have been selected.
It is now of interest to be able to compare the graphs

quantitatively. To this end, we propose to adopt a clas-
sification framework, where conditions are considered as
classes.

2.3. Embedding functional connectivity graphs
in vector space

In representing functional connectivity graphs as points
in a vector space, one important property is to preserve
the “similarity”: graphs that are similar should corre-
spond to close points in vector space.

We use a simple embedding procedure: since A
′(i)
n,c is

symmetric and its main diagonal is 0 : M × 1, it is fully
characterised by its upper triangular part above the main
diagonal. For each graph, we thus generate a feature
vector F :

(
M
2

)× 1 from the edge weights of all the edges

in the upper triangular part of A
′(i)
n,c . All edges that were

statistically thresholded because of their insignificance
(see Section 2.2) are mapped to 0 in feature space. It
would also be possible to omit these coordinates in the
embedding.

Thus, the statistically motivated significance test-
ing procedure on graph edges corresponds to a FDR-
controlled feature selection procedure focused on min-
imising intra-class variance.

2.4. Classification

Decision trees are discriminative classifiers performing
recursive partitioning of a feature space to yield a po-
tentially non-linear decision boundary. In particular, the
C4.5 algorithm [11] and its variants seek to find cutpoints
in continuous variables f that minimize the conditional
entropy on class labels C = {1, . . . , C} attached to points
in the corresponding subdomains of the discretised vari-
able f ′. The choice of the feature and its cutpoint are
critical. More precisely, we can express the entropy of
the dataset partitioned by feature f ′ as:

H(C|f ′)
�
= −

2∑

j=1

Pj

C∑

c=1

Pj,c log2 Pj,c, (1)

where Pj is the relative frequency of points in the subset
that have value j for feature f ′, and Pj,c is the relative
frequency of points that belong to class c and have value
j for feature f ′.

The goal of decision tree growing is then to mini-
mize (1), which is equivalent to maximizing the mutual
information between I(C;f ′), and involves recursively se-
lecting features and computing the result of applying dif-
ferent cutpoints to them.

In our case, the features correspond to dimensions
in the feature vector, which in turn correspond to edge
weights in the functional connectivity graph. Recalling
that several dimensions have been set to zero by the FDR
thresholding procedure, it is clear that the decision tree
will never select these dimensions because for a constant
random variable K we have H(C|K) = H(C), and thus
we have no decrease in conditional entropy.

It is well known that decision tree classifiers can be
unstable, in the sense that the decision boundary can be
sensitive to even small changes in the training set. By us-
ing bagging [12], which creates multiple “bootstrapped”
sets of data by repeatedly sampling with replacement
from the training set, we can train diverse classifiers on
each of the bootstrap samples, and we can average their
prediction by voting. This reduces classifier variance and
in a wide variety of classification problems leads to im-
proved accuracy.

In order to avoid overfitting, we never train and test
the classifier on data of the same subject. We derive
the bootstrap samples and grow the decision trees us-
ing a leave-one-subject-out cross-validation procedure,
by which the data of N−1 subjects are used for training,
and the data of 1 subject is used for testing. The train-
ing and testing partition is then rotated N times. This
well-motivated evaluation procedure implies that inter-
subject decoding takes place in our experimental setting.



2.5. Discriminative graph computation

Based on the N sets of ensembles of trained decision tree
classifiers, we propose to compute statistics about the
connections that were most often used in discrimination
across cross-validation folds and within bootstrapped
samples. Every time a unique connection (between dif-
ferent brain regions) appears in one of the ensembled
decision trees within a fold, the corresponding count is
incremented.

This procedure allows us to build a discriminative
graph, which represents functional connectivity that is
markedly different between the conditions of interest,
and is useful for analysis. The vertices of the discrim-
inative graph are the brain regions linked by the con-
nections used by the decision trees. The weights of the
edges connecting vertices can be set to be proportional
to the number of times the connection has been used in
decision tree growing.

3. EXPERIMENTAL RESULTS

3.1. Data acquisition and preprocessing

The experimental design is a blocked design with alter-
nating epochs of movie excerpts (50 seconds) and resting
periods (90 seconds). During rest, subjects are instructed
to close their eyes, relax, let their mind wander and avoid
thinking of something in particular.

The subjects (1 male, 9 female) are aged between
18 and 36 years old, without history of neurological
disorders. Scanning was performed on a Siemens 3T
Tim Trio. Functional imaging data were acquired in
two sessions using gradient-echo echo-planar imaging
(TR/TE/FA = 1.1 s/27 ms/90◦, matrix = 64×64, voxel
size = 3.75×3.75×4.2 mm3, 21 contiguous transverse
slices, 1.05mm gap, 2598 volumes). Structural imaging
data was acquired using a three-dimensional MPRAGE
sequence (192 slices, TR/TE/FA = 1.9 s/2.32ms/9◦,
matrix = 256 × 256, voxel size = 0.90 × 0.90 × 0.90
mm3).

Because of the experimental paradigm, task and non-
task blocks alternate. Within each subject, the blocks
containing the 90 time-courses corresponding to the same
condition (movie, resting) are concatenated after being
linearly detrended to compensate for potential drift, re-
sulting in a single matrix of time courses for the resting
condition, and one for the movie condition.

We show in Fig. 1 two averaged thresholded adja-
cency matrices, one for the resting condition and one for
the movies condition.
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Fig. 1. Adjacency matrices for 90-regions connectivity
graphs in subband 3, thresholded at α = 0.1%. Dark
blue entries are not significant.

3.2. Classification and discriminative graph

Each subject provides one connectivity graph of the rest-
ing class (c = 1) and one connectivity graph of the movie
class (c = 2). Classifier training and testing is performed
using the procedure outlined in Section 2.4, with 51 boot-
strapped samples each 1.5 times the size of the base train-
ing set. Note that the intersection significance masks (see
Section 2.2) are computed in-fold using only the training
data. They are applied to both the training and testing
adjacency matrices.

Classification results are given in Table 1.

Subband α = 5% α = 0.1% α = 0.01%

1 (0.23-0.45 Hz) 55% — —
2 (0.11-0.23 Hz) 65% 75% —
3 (0.06-0.11 Hz) 90% 90% 90%
4 (0.03-0.06 Hz) 70% 70% 75%

Table 1. Leave-one-subject-out accuracy. Results
marked — are missing since no significant connections.

The number of connections passing the significance
threshold is significantly higher for low frequency sub-
bands. This reflects that resting-state networks are
found to be quite consistent across subjects [13, 5],
which in turn will yield relatively low standard deviation
on inter-subject graph edge weights.

Across frequency bands, it can be seen that feature
selection via FDR-thresholding of connectivity graphs
generally brings slight improvements in accuracy. While
the connections selected in growing decision trees are
very similar across significance thresholds, the slightly
improved performance can be attributed to the fact that
the significance mask is also applied to the test samples,
thereby reducing intra-class variability and contributing
to counteract the overfitting tendency of decision trees.

A discriminative graph H can be extracted for each
subband from the distribution of classifier parameters as



(a) H+ (rest > movies) (b) H− (movies > rest)

Fig. 2. Axial view of subgraphs extracted from the
discriminative graph (fourth subband). Darker colour
and thicker line means more discriminative connection.
Circles indicate atlas region centroids. Weighting is the
same on both subgraphs.

explained in Section 2.5. To ease visualisation and inter-
pretation of the fourth subband, we split the associated
H in two discriminative subgraphs; i.e., from the sign of
the contrast “rest > movies”, obtained from the N ad-
jacency matrices, we derive the subgraphs H+ and H−
for positive and negative values, respectively. It should
be noted that both subgraphs carry discriminative power
to distinguish rest versus movies. However, H+ reflects
those connections that are stronger in rest than movies
condition, and vice versa. We thus have H = H+ ∪H−.

The axial views of the subgraphs in anatomical space
are shown in Figure 2. In (a), we observe a strong con-
nectivity pattern for the resting condition in the occipital
cortex with notable bilateral coactivation, also with the
auditory cortices. This type of coherent BOLD fluctua-
tions are reminiscent of the low-frequency subband [4, 5].
These connections are also the most discriminative. In
(b), the movies condition has important connections be-
tween limbic and central areas, including prefrontal ar-
eas. They are, however, less discriminative. These pre-
liminary results demonstrate the feasibility of the pro-
posed methodology.

4. CONCLUSION

The proposed approach is a promising avenue for anal-
ysis of functional networks in fMRI data, as shown by
the high classification rate attained in an inter-subject
brain decoding problem. The choice of decision trees
and the method proposed to extract discriminative con-
nections combines high-end classification performance of
ensemble methods with interpretability of results. The
approach might also be useful in investigating changes
in network activity related to pathologies. In the case of
Alzheimer’s disease, for example, changes in the default-

mode network have been reported [3].
In future work, we will evaluate the use of differ-

ent classifiers as well as the influence of the dependency
measure that is used to characterize the connectivity
strength.
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