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Abstract. Classifiers based on Gaussian mixture models are good per-
formers in many pattern recognition tasks. Unlike decision trees, they
can be described as stable classifier: a small change in the sampling of
the training set will produce not a large change in the parameters of
the trained classifier. Given that ensembling techniques often rely on
instability of the base classifiers to produce diverse ensembles, thereby
reaching better performance than individual classifiers, how can we form
ensembles of Gaussian mixture models? This paper proposes methods to
optimise coverage in ensembles of Gaussian mixture classifiers by promot-
ing diversity amongst these stable base classifiers. We show that changes
in the signal processing chain and modelling parameters can lead to sig-
nificant complementarity between classifiers, even if trained on the same
source signal. We illustrate the approach by applying it to a signature
verification problem, and show that very good results are obtained, as
verified in the large-scale international evaluation campaign BMEC 2007.

1 Introduction

Successul ensembling methods such as bagging [3] and boosting [5] rely on the
fact that the ensemble member classifiers are unstable, that is, a small change in
the sampling of the training set will produce a large change in the trained clas-
sifier. Unstable classifiers include decision trees and neural networks [3], while
others such as näıve Bayes are considered stable [8]. In reality, there is a con-
tinuum of stability, in the sense that the amount of output change incurred
by different classifiers with respect to changes in the training set is not simply
binary (“stable” or “unstable”) [2].

Training several unstable classifiers with different sampling of the training
set is one way to produce an ensemble that is diverse. The hope is that the
training procedure produces classifiers whose output is complementary: they
yield erroneous outputs for different samples. By combining these classifiers, the
total variance can be reduced, typically leading to reductions in expected error
rates.
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In many applications dealing with real-life signals, a classifier that systemati-
cally yields good results is the Gaussian mixture model (see e.g. [13]). Example
applications are speaker verification [16] or face recognition [21]. Leaving out
effects of critically small training sample sizes with respect to the model com-
plexity, Gaussian mixture models can be considered as stable classifiers. Given
that multiple-classifier systems can outperform single-classifier systems on a large
number of tasks and datasets [12], it would seem beneficial to build ensembles
of Gaussian mixture classifiers. However, as pointed out above, diversity is an
important factor for successful ensembling. How, then, can we increase diversity
in ensembles of stable classifiers?

Recent work has shown that adding components to stable classifiers before
ensembling could improve results over standard techniques such as bagging for
these classifiers classifiers. For example, in the Random Oracle technique applied
to näıve Bayes classifiers [19], the training set is split at random between the
two classifiers, and at test time the base classifier is also selected at random.
Another technique based on a hybrid of näıve Bayes and decision trees, called
Levelled Näıve Bayesian Trees [22], is to grow a decision tree whose leaves are
näıve Bayes classifiers. The hope there is that the näıve Bayes classifiers will
inherit the instability of the decision tree growing procedure, and make them
more amenable to boosting.

In this paper, to optimise the coverage of the ensemble, we propose instead
to act at different levels of the pattern recognition processing chain of individual
classifiers in order to increase diversity in ensembles of Gaussian mixture classi-
fiers, and note that this does not prevent the application of other destabilising
techniques. We should also note that, while it seems “diversity” is a desirable
property of classifier ensembles in order to reduce error rate, there is no con-
sensus on how to measure it and how it relates to ensemble performance [11],
although theoretical work in this area is progressing [14].

The rest of this paper is laid out as follows: In Section 2 we present in more
details techniques that can be used to increase diversity in ensembles of stable
classifier. In Section 3, we show the detailed application of these principles to
a multiple-classifier signature verification system based on Gaussian mixture
models. In Section 4 we provide experimental results on a signature verification
database, and Section 5 concludes the article.

2 Increasing Diversity in Ensembles of Stable Classifiers

A pattern recognition systems consists of a front-end responsible for extracting
features, a training procedure to learn the parameters of the classifier, and a
testing algorithm to obtain soft or hard output from the classifier. We will now
examine these levels in more details and how they can be modified to influence
the output of a classifier, which in turn can promote diversity in an ensemble.
In the application field of biometrics, some of these techniques fall under the
general heading of “multibiometrics” [20].
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2.1 Changes to the Front-End

The front-end to pattern recognition systems uses a signal processing chain that
starts with real-world analogue signals. A schematic view is shown on Figure 1.

signal acquisition pre-processing feature extraction post-processing training

Fig. 1. Front-end for pattern recognition

Changes in any of the processing steps will affect all other steps further down-
stream, and lead to various amounts of classifier diversity. Even within the same
modality (say, infrared images), changing the sensor at the signal acquisition
stage can lead to significant differences between classifiers. In this regard, mul-
timodal pattern recognition can be seen as a way to obtain diverse ensembles.

The pre-processing performed on the data can have a large influence on
the feature extraction process. Filtering, denoising, imputing missing data and
other linear and non-linear transformations of the digitised signal can lead to
significant differences further down the processing chain.

The representation of the signal as vectors of features typically involves a
non-linear transformation of the pre-processed signal. For example, the use of
Fourier transforms and related transforms such as the DCT at the feature
extraction stage change signal representation and may permit the extraction
of features that lead to classifiers complementary to those trained on other signal
representations. This technique is used in many applications such as language
recognition, where different parameterisations of speech are often combined [15],
or fingerprint recognition, where minutiae can be combined with skin pores [10].
Even within the same signal representation, it is possible to use random feature
subspace methods [7] to purposefully obtain diverse classifiers.

Finally, the post-processing stage, which typically consists of some form of
statistical normalisation of the feature vectors (mean removal being typical in
speech applications [6]), can also introduce important changes to the trained
parameters of the classifier by applying linear or non-linear transformations to
the original feature space.

2.2 Changes in the Sampling of the Training Set

By our definition of stability, varying the sampling of the training set, a common
strategy for achieving diversity in ensembles, will not be effective for increasing
diversity in ensemble of stable classifiers (although see [19] for a more sophisti-
cated approach). Thus, we propose to concentrate efforts on other parts of the
pattern recognition system.

2.3 Change in Model Complexity

Classifiers implemented as statistical models (Gaussian mixture models, genera-
tive Bayesian networks) form a family in which the number of parameters has a
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great influence on classification results. For example, modifying the covariance
matrix structure (say, from diagonal to full) can substantially alter the output
of the classifier. Likewise, by modifying the number of hidden variables in a
Bayesian network corresponding to the number of components in a mixture of
Gaussians, and thereby changing the number of parameters in the model, it is
possible to decorrelate stable models that are trained from feature vectors where
everything else in the front-end (acquisition, pre-processing, feature extraction,
post-processing, samplig of the training set) is identical.

2.4 Change in Scoring Procedure

The same model can be used to compute a score in different ways. Depending
on the model type, this is a way to promote diversity. In this regard, the recent
technique presented in [23], whereby a hidden Markov model is used to produce
likelihood output and a Viterbi-related output which are then combined, can
be seen as a way to exploit complementarity in classifier output. However, for
GMMs, it is likely that gains obtained from combining all-components scoring
with top-components-scoring1 would be small.

3 Application: A Gaussian Mixture Ensemble for
Signature Verification

In this section, we present an application of the techniques exposed in Section 2 to
the problem of signature verification, where the Gaussian mixture model is one of
the best-performing classifiers [17]. The goal is to train a diverse set of signature
verification classifiers, so that they can be effectively combined. The Gaussian
mixture ensemble we present consists of L =6 different Gaussian mixture model
classifiers. In fact, since biometric verification problem can be cast as a series
of 2-class problems, each of the U users is modelled by one of the U Gaussian
mixture ensembles.

We do not use a measure of diversity based on the label (hard, binary) outputs
of the classifiers [11], but rather the normalised mutual information between the
scores (soft, continuous) outputs of the classifiers. We assume that having lower
mutual information between pairs of classifiers is equivalent to having a higher
diversity in the ensemble2. We use the following definition for normalised mutual
information:

Ī(Sc1; Sc2)
�
=

I(Sc1; Sc2)√
H(Sc1)H(Sc2)

, (1)

where I(Sc1; Sc2) is the mutual information between the scores output of two
classifiers, and H(Scl) is the entropy of the scores output of the lth classifier.
1 This is a common technique in speaker recognition [1], where high model orders and

large datasets warrant the summing of some of the Gaussian components in the
likelihood computation

2 Using conditional mutual information would allow us to take into account the effect
of already having included certain classifiers in the ensemble.
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3.1 Preprocessing

On some low-power signature acquisition platforms such as personal digital assis-
tants, data acquisition may produce missing values intermittently. Missing data
is also a frequent occurence in slow and fast strokes. In this case, an effective
approach is to interpolate the missing data. By using different interoplation al-
gorithms, or none at all, it is possible to introduce variability in the signal which
will be reflected further down the processing chain. Figure 2 shows the result
of two different interpolation methods on the same data. Looking at a single
classifier, it is not obvious which interpolation method is the best in terms of
accuracy.

0 100 200 300 400 500 600 700 800
680

700

720

740

760

780

800

820

840

860
BMEC 2007 signature

 

 
original data
linear interpolation

(a) Linear interpolation on pen-down
points only

0 100 200 300 400 500 600 700 800
680

700

720

740

760

780

800

820

840

860

x

y

BMEC 2007 signature

 

 
original data
B−spline interpolation

(b) B-spline interpolation

Fig. 2. Signature preprocessing for recovery of missing data on BMEC 2007

A second pre-processing technique that could lead to diversity is rotation
normalisation. Indeed, in some situations, such as handheld device-based ac-
quisition, it is likely that the orientation of the signature with respect to the
horizontal axis of the acquisition surface can be very variable. We estimate the
principal axis of the signature by eigendecomposition: The eigenvector associ-
ated with the largest eigenvalue indicates the axis of greatest variance. Again,
from looking at the accuracy of a single classifier it is not obvious whether this
really is of help, but it can be used to force diversity in an ensemble.

The preprocessing used by the local and global classifiers in our ensemble is
detailed in Table 1.

3.2 Feature Extraction

In the parametric paradigm, local, segmental, or global parameters are computed
from the pre-processed signals and used as features.

Local features are extracted at the same rate as the incoming signal: that is,
each input sample data vector corresponds to a local feature vector.

Segmental features are extracted once the signature has been cut into seg-
ments. A segment typically consists of a sequence of points for which some defi-
nition of coherence holds.
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Global features summarise some property of the complete observed signature;
for instance the total signing time, pen-up to pen-down ratio, etc.

Changing the signal representation and combining the resulting classifiers is a
common technique in pattern recognition, and has been applied also to signature
verification [4]. Our Gaussian mixture ensemble consists of 5 classifiers trained
on local features, and 1 classifier trained on global features (see Table 1).

Table 1. Details of classifier in the ensemble

Name GL1 GL2 GL3 GL4 GL5 GG

Interpolation LI B-S LI LI B-S LI

Rotation y n y n y n

feature set 1 1 1 2 3 4

user model order 24 36 2

world model order 4

3.3 Modelling

Diversity can be enforced in ensembles of Gaussian mixture models by changing
the number of parameters used for the constituant classifiers, for instance by
changing the type of covariance matrix (diagonal, full, spherical...), or by choos-
ing a different number of Gaussian components in the mixture. A further way
of increasing diversity is by using a MAP adapation scheme instead of direct
training.

3.4 Diversity in the Ensemble

The 5 GMM classifiers based on local features, denoted GL1...5, and the GMM
classifier based on global features, denoted GG, use the specific combinations of
preprocessing, feature extraction, and model orders shown in Table 1. In the ta-
ble, LI referes to linear interpolation, while B-S refers to B-spline interpolation.
Rotation indicates whether rotation normalisation is performed or not. The fea-
ture sets are as follows: feature set 1 comprises {xt, yt, Δ, ΔΔ}, where xt and yt

are the sampled horizontal and vertical position of the pen. The Δ and ΔΔ fea-
tures are numerically approximated first, respectively second derivatives of the
base features. Feature set 2 is {xt, yt, θt, vt, Δ, ΔΔ}, where θt is the writing an-
gle and vt is the instantaneous writing speed. Feature set 3 is {xt, yt, zt, Δ, ΔΔ},
where zt is a binary variable representing pressure. Feature set 4 comprises 11
global features, described in [18]. Lastly, different number of components are
used in the mixture, denoted user model order.

In terms of classifier output, these changes result in a diverse ensemble of
GMMs, with complementarity clearly showing on Figure 3. As could be expected,
the different parameterisation of the signal (local or global) result in the largest
diversity, but it can also be observed that changing the model order or the
preprocessing can also lead to important changes in classifier output. To put the
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results in perspective, the normalised mutual information between a vector x
consisting of 1000 samples drawn at random from a uniform distribution between
0 and 1 and the vector-valued sin(x), a near-linear relationship, is 0.75. The
normalised mutual information between two vectors of dimension 1000 randomly
drawn from a uniform distribution between 0 and 1 is 0.02. Thus, it can be seen
that significant reductions in dependence between classifiers can be achieved by
applying the approach proposed here: for example classifiers GL1 and GL3 have
a normalised mutual information of 0.41, while the only difference between them
is the model order (and the random initialisation of the EM algorithm).
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Fig. 3. Mutual information between classifiers in the ensemble. Note that the diagonal
(equivalent to the entropy of each classifier) has been set to 0 for enhanced contrast.

4 Verification Experiments and Results

4.1 Database

The BMEC2007 development database contains 50 users, each with two sessions,
and is part of the larger BioSecure DS3 dataset. For each user, the first session
contains 5 genuine signatures and 10 skilled forgeries3. The second session con-
tains 15 genuine signatures and 10 skilled forgeries. Signatures are acquired on a
low-power mobile platform (Ipaq PDA). This means that some data is missing,
and interpolation approaches outlined in Section 3.1 have to be applied. Further-
more, the orientation of the signatures is haphazard. The acquisition platform
only captures binary pressure (on/off) and x,y signals. No pen orientation infor-
mation is available. The low quality of the data explains why error rates are in
general high on this database compared to other signature databases.

3 These forgeries fall between levels 6 and 8 in [9, Table 3], as the forger has no visual
contact with the victim, but is allowed to see several times the dynamics of signing.
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4.2 Protocol

For each user, We train their set of classifiers (GL1...5 and GG) on the 5 genuine
signatures of the first session. We then run these classifiers on the remaining held-
out test data. Thus, for each user we obtain 15 genuine and 20 skilled forgery
scores, resulting in a total of 750 genuine signature scores and 1000 skilled forgery
scores.

The ensemble classifier (in the present case a simple mean rule, but similar
results are obtained using logistic regression) is then trained and tested with this
score data using 5-fold cross-validation.

4.3 Results

Glancing at Figure 4, it appears that the local classifiers in the ensemble offer
approximately the same performance, while the global classifier trails behind. By
ensembling local classifiers via the mean rule, it is already possible to substan-
tially lower the error rate, indicating that our coverage optimisation approach
based on changes in preprocessing, feature subsets, and modelling complexity is
effective. Further adding a global classifier, itself with different features and mod-
elling complexity, yields improved performance. This could be expected given
that global information is complementary with local information, and that time
information (signature length) is incorporated in the global feature set. While
not reported here, we have performed experiments on other signature databases
with similar results. It is interesting to note that, while classifiers GL3 and GL4

have virtually identical performances, their mutual information is low (0.3); this
is to be accounted for mainly by the rotation normalisation and the inclusion of
tangent angles in one feature set. None of them stands out in isolation, but they
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can be usefully combined because of their diversity. It is certainly possible to
reduce the complexity of this ensemble by removing a few local classifiers, while
still preserving an adequate accuracy.

This ensemble performed well in the BMEC 2007 competition, comprising a
database 430 users, and has taken first place for random forgeries (about 4.0%
EER), second place for skilled forgeries (about 13.6% EER), and first place for
synthetic forgeries (about 10.7% EER).

5 Conclusions

In biometric verification applications, Gaussian mixture models are generally
top performers. Other classifiers commonly used in pattern recognition, such as
decision trees or random forests, are not often used as base classifiers. We have
shown that despite their being categorised as stable, Gaussian mixture models
can serve as base classifiers in ensembles if coverage is optimised adequately. To
this end, the signal processing chain and other components of the pattern recog-
nition pipeline has to be modified to introduce variability. While the resulting
classifiers have roughly the same accuracy, they are complementary and can be
usefully combined in an ensemble.
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