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Abstract

In this paper we propose a methodology for select-
ing the most discriminative features in a set for on-
line signature verification. We expose the difference in
the definition of class between signature verification and
other pattern recognition tasks, and extend the classi-
cal Fisher ratio to make it more robust to the small
sample sizes typically found when dealing with global
features and client enrollment time constraints for sig-
nature verification systems. We apply our methodology
to global and local features extracted from a 50-users
database, and find that our criterion agrees better with
classifier error rates for local features than for global
features. We discuss the possibility of performing fea-
ture selection without having forgery data available.

1 Introduction

Different types of features have been proposed to
represent signatures in verification tasks: local features,
where one feature is extracted for each sample point in
the input domain, global features, where one feature is
extracted for a whole signature, based on all sample
points in the input domain, and segmental features,
where the signature is subdivided into segments (typ-
ically based on velocity) and one feature is extracted
for each segment. Within each feature type, many fea-
tures are available to the signature verification system
designer. Signature verification can be considered as a
two-class pattern recognition problem, where the au-
thentic user is a class and all her forgers are the second
class. Feature selection refers to the process by which
descriptors (features) extracted from the input-domain
data are selected to provide maximal discrimination ca-
pability between classes. In previous work on feature
selection for signature verification, statistical methods
such as Linear Discriminant Analysis (LDA) have been
applied for segmental features to obtain the discrimi-
native power of each individual feature [2]. In [8], a

*now with IDIAP Research Institute, Martigny

statistical distance measure (feature-by-feature differ-
ence of means between two users scaled by standard
deviation) is used to select the best feature subset out
of a 42-features and a 49-features candidate list. In [1],
a backwards search procedure starting from 44 global
features is used with an equal error rate (EER) cost
function to select a subset of features. Selection of lo-
cal features based on classifier score (match distance
called dissimilarity measure) is performed in [5]. Re-
cently, a mix of 22 local and global features extracted
from the SVC 2004 database were extracted and ranked
individually by a “consistency” measure, essentially a
difference of distance measure-specific means scaled by
the standard deviations [9]. We reviewed a large num-
ber of global features (more than 150 extracted from 60
papers dating from 1983 to the present) before settling
on an initial subset of the 46 that seemed to be the
most commonly used in literature. To perform feature
selection, we use a near-optimal feature space search
algorithm (floating search) along with a modified ver-
sion of the Fisher ratio as a cost function. In order to
take into account effects of correlation between feature
vector components, the cost is computed on whole fea-
ture vectors instead of individual features. The results
of applying this method to global features on a 25-users
database are reported in [6]. Our approach is as follows:
a series of search steps (described in Section 3) starting
from an initial set of features is used. At each search
step a cost function (described in Section 2) measuring
the discriminative ability of the whole feature subset
is applied. We then correlate the cost function value
with the mean equal error rates (EER) of a classifier
for signature verification using global (Section 4) and
local features (Section 5).

2 Measuring the class separation abil-
ity of feature subsets

In order to evaluate a candidate feature vector sub-
set at each search step, it is necessary to define an ob-
jective measure or cost function. The measure should



be high when classes are more easily separable in fea-
ture space. Many types of cost functions can be used
for feature selection. While it can be argued that ul-
timately the classifier error-rate (wrapper method) is
the optimal criterion because the best feature vector
will not be the same for different classifiers [4], running
times can be prohibitive if many different feature sub-
sets have to be tested. In the present work, we use a
modified version of the Fisher ratio as a cost function,
which we explain below.

The Fisher ratio [4] provides an intuitive mathemati-
cal framework for expressing the idea that within-class
variability should be small, while between-class vari-
ability should be large. The within-class scatter matrix
is defined as follows:

M
Sw = Z szm,7 (1)

where M is the number of classes, P, is the prior
probability of class m, and ,, is an estimate of the
class covariance matrix

The between-class scatter matrix is defined as:

M
Sy = Z P (pm — 120) (. — o) " (2)

where fi,, is the mean for class m and g is the global
mean vector, computed over all classes as follows:

M
Ho = Z P, (3)
m=1

From Eqgs. 1 and 2, one computation that can be
used for the “classical” Fisher ratio is:
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Thus, J will be large when class samples (signature
presentations) are narrowly clustered around their class
means and class clusters are well separated.

2.1 Modificationsto the Fisher Ratio

The Fisher Ratio relies mainly on estimates of class
covariances and global covariances. Unfortunately, for
global features the amount of data points available for
training these covariances is very small, as only one
multidimensional datapoint will be extracted from each
signature. In our application scenario, users provide
only 5 training signatures to keep enrollment times
with reasonable limits. Therefore, it is expected that
covariance estimates will be severely biased and inac-
curate. While not ideal, a criterion based solely on

estimations of the class means will prove more robust
in these situations.

Another shortcoming with using the definition of
Fisher ratio in Equation 4 as a class separability mea-
sure is that the between-class separation is only mea-
sured with respect to the global mean. Therefore, if
the sum of class distances to the global mean stays
the same, J will not become larger for classes that are
pairwise further apart.

In an attempt to correct these issues, we add an
Euclidean distance term representing the averaged two-
by-two distance between class means F to the J crite-
rion:

M
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Depending on the amount of data available, this cri-
terion could be biased in favour of either the J or the
E component by normalising each component with re-
spect to its dynamic range over a development set, and
experimenting with weights. In the current form, the
E term tends to dominate for many feature subsets.

2.2 Déefinitionsof classin feature selection for sig-
nature verification

The first possibility is to consider each user as a
class, and to compute the modified Fisher ratio J’
of Equation 6 using these classes (as many classes as
users). This will measure the separability between au-
thentic users, which is equivalent to measuring the sep-
aration ability of a feature subset for random impos-
tors. We denote this definition of our measure J,,.

The second possibility is to define two classes for
each user: one authentic class and one forgery class.
In this case the modified Fisher ratio J’ is computed,
for each user, with these two classes. Then, the mean
over all the users is computed to produce what we call
the “authentic-forgery” cost function Jg.

This distinction is of practical importance for system
designers: skilled forgeries may not always be avail-
able when developing an application, thus if the J,
correlates well with the equal error rates of the classi-
fier, we may perform feature selection while alleviating
the need for forgery data. This is not necessarily an
issue for research databases such as SVC2004 [12] or
MCYT [10], which provide forgeries.



2.3 Datanormalisation

Data normalisation is an important issue when us-
ing Fisher ratio-type measures of class separability
for feature selection. Features used for on-line signa-
ture verification typically have very different dynamic
ranges. As an example, the first moment feature (sum
of squares of zero-meaned x and y components nor-
malised by signature length) has small values in the
10~2Y range, whereas the number of z values with pos-
itive velocity has large values in the 102 range.

Since the Fisher ratio is based on the trace of the
class covariance matrices, it is easy to see that fea-
ture with larger dynamic ranges, which have larger
variances than other features, will dominate the trace.
Thus, they will carry more weight in the ratio and po-
tentially more discriminative features will not be se-
lected if their dynamic range is smaller.

The simple solution we have adopted is to normalise
all features with respect to their max, min and mean
values in the subset used to train the models. This was
done both for global and local data prior to feature
selection.

3 Searching the feature subset space

With a large number of initial features, exhaustive
search of the feature subset space becomes computa-
tionally intractable, as an initial set of F' features would
result in 2F — 1 possible combinations. Many algo-
rithms exist for reducing this time down to reasonable
limits, amongst which genetic algorithms and floating
search are popular choices and can offer comparable
performance for a “medium” amount of initial features

(20 to 50) [7].
Therefore, we use sequential forward floating
search [11]. Floating search includes features in the

current set based on recomputing the cost function for
the “current set plus the candidate feature” to choose
which non-included feature would bring the most in-
crease in the cost function; it excludes features from
the current set by selecting the feature whose removal
would be the least damaging to the cost function. Once
the floating search has reduced the initial feature set
to a more tractable dimension, optimal (exhaustive)
search can be performed on the reduced space of po-
tential feature subsets.

In our experiments, we use floating search to reduce
an initial set of 46 global features down to a vector of
size 12, and likewise for local features we use floating
search to reduce an initial set of 39 features to a vector
of size 12. The choice of a final vector size of 12 was
dictated by the fact that we intend to perform exhaus-
tive search on the 4095 resulting subsets, and it may

not be the optimal size.

4 Experiments: global feature selection

We used a 50-users subset of the MCYT data-
base [10], which provides 25 authentic signatures per
user and 25 “skilled” forgeries from 5 different forgers,
which are allowed to practice their imitations being
shown a static realisation of their target’s signature.
Our initial set of 46 global features is summarised in
Table 2. The forward floating search algorithm was run
on this initial set, using only authentic signatures, to
produce a secondary subset of 12 features which max-
imise the cost function of Equation 6. These are shown
in Table 1.

T |6 |8 [11]14] 15
20 | 33 | 21 | 22 | 38 | 37 (y)

Table 1. Secondary subset of 12 global fea-
tures selected by floating search (numbers
reference Table 2)

It can be seen that four features carrying pressure
information in the initial subset are present in the sec-
ondary subset. This is in line with many reported re-
sults in the litterature (a notable exception being [12])
that pressure is an important distinguishing feature be-
tween signers.

Secondly, to assess the ability of this criterion to
predict classifier error rates, we performed exhaustive
search on the 4095 possible subsets resulting from this
secondary subset. The classifier we used is a Gaussian
Mixture Model (GMM) classifier with 2 diagonal-
covariance matrix Gaussian mixture components per
user and 6 diagonal-covariance matrix Gaussian mix-
ture components for the world model. The classifier is
trained from 5 randomly chosen authentic signatures
per user (since we are using global features, this means
5 d-dimensional data points, where d is the dimension-
ality of the feature subset under test), and tested on 20
held-out authentic signatures and 25 forged signatures,
resulting in 1000 authentic test and 1250 skilled forg-
eries tests per feature subset. Figure 1 shows the result-
ing scatter plot between the J,, criterion value and the
mean EER computed over 5 random cross-validation
runs. The linear correlation coefficient was computed
to be -0.64. This result shows that the J,, criterion can
give an indication of the error rate to be expected when
using a given global feature subset, and can be used as
a preliminary step when exploring new databases or
application scenarios. However, being a statistical cri-
terion it may be too sensitive to the (low) amount of



training data provided and as such may not be the most
appropriate choice when dealing with global features.
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Figure 1. Scatter plot of GMM classifier EER
and J, value for size 12 subsets (p = —0.64)

Another interesting result is to compare the cost
functions Jg, which defines two classes for each user:
themselves and their forgers, and J,, which defines
each user as a class (see Section2.2). Computing a
correlation coefficient gives 0.78, meaning the two cost
functions are highly correlated. This suggests that us-
ing a criterion for user-to-user separation (J,) can be
used to select effective features (in the signature ver-
ification sense) based only on authentic samples, and
that to this end forgeries may not be necessary. While
this could be a database artefact due to the non-expert
status of forgers, it is tempting to postulate that max-
imising the distance between legitimate users in feature
space will also contribute to separate forgeries and au-
thentic signatures.

5 Experiments: local feature selection

For local feature selection we used an initial set con-
sisting of 13 base local features, their first order deriva-
tive (approximated using regression), and their second
order derivative. Table 3 shows only the details of the
base features, where the ¢ subscript indicates that this
feature is sampled at time instant ¢.

Again, floating search was used to find the 12-
features subset that would maximise our cost function.
The result of the floating search is displayed in Ta-
ble 4, with features sorted by their order of inclusion
(thus, from most significant contribution to least signif-
icant contribution). All signals provided directly by the
tablet (pressure, y, azimuth, elevation, x) are included
in the resulting feature subset. Pen orientation infor-
mation, which was selected by the search algorithm,
is thought to carry writer-specific information [3] and
has been in use for a long time in signature verifica-
tion. It is to be noted that, as is the case in speech

recognition applications, derivative features can help in
discrimination by compensating for improper indepen-
dence assumptions between feature vectors, but carry
less class-specific information than the base features,
and as such only two of them (Axz and Aa) are in-
cluded in the secondary subset.

3121213 |14
51811 | 14 |6 | 21

Table 4. Secondary subset of 12 local features
selected by floating search (numbers refer-
ence Table 3)

We trained and tested GMM-based classifiers using
32 diagonal-covariance matrix Gaussian mixture com-
ponents for the user models and the world model. The
local feature data was standardised to unit variance
and zero-mean before modelling. Due to time con-
straints, we report results for 198 subsets only on the
scatter plot of Figure 2; the latter suggests that J,, is
a better criterion for selecting local features than for
global features, as the criterion is more correlated to
the EER than for the global feature case. This can
partly be explained by the fact that the covariance es-
timates which form part of the classic Fisher ratio (4)
can now be estimated with about 3 orders of magni-
tude more data (one single, 2-seconds signature gen-
erates 200 local feature vectors if sampled at 100 Hz),
and thus are likely to be more indicative of class scat-
ter. The same argument goes for the pairwise distance
measure term E (which is mostly dominating the J,
criterion) and will have lower bias than in the global
feature case. Lastly, the data standardisation we per-
form before modelling causes the distribution of local
features to be closer to unimodal Gaussian.

GMM classifier error rate

0 10 20 EY 0 50 & 7 0 %0
3, criterion

Figure 2. Scatter plot of GMM classifier EER
and J, value for size 12 subsets (p = —0.79)

6 Discussion

We have shown a complete methodology for feature
selection in signature verification and emphasised prac-



1: number of samples (T")

2: signature height (H)

3: signature width (W)

4: W to H ratio

5: T to W ratio

6: avg. velocity

7: max velocity

8: avg. velocity + max velocity

9: avg. x velocity

10: var. of = velocity 11: num. pts. with positive  velocity | 12: RMS velocity

13: var. of velocity 14: pen down samples (Ty) 15: time of max velocity +T},
16: time of max x velocity +7,; | 17: RMS acceleration 18: avg. acceleration

19: var. of acceleration 20: avg. pressure 21: max pressure

22: point of max pressure 23: avg. azimuth 24: avg. elevation

25: avg. y velocity 26: x y velocity correlation 27: first moment

28: max pressure-min pressure 29: max z velocity 30: avg. x acceleration

31: max y velocity 32: avg. y acceleration 33: var. of pressure

34: point max. velocity +T} 35: num. points with negative x or y velocity +Ty

36: max. acceleration 37: num. points with positive  or y velocity +Ty4

where k=2,...,Tandg¢=1,...,8

38-46: tangent histogram in 8 quadrants: Sq = card {6; : (¢ — g <6< q%} =(T-1)

Table 2. Initial set of 46 global features

1: horizontal position x

2: vertical position y;

3: normal pressure p¢

4: path tangent angle 0

5: total velocity v

6: x velocity vy

7: y velocity vy

8: total acceleration a

9: z acceleration az

10: y acceleration ay

11: log radius of curvature

12: pen azimuth

13: pen elevation

14-26: A(features 1-13)

27-39: A(features 14-26)

Table 3. Initial set of 39 local features

tical points such as data normalisation and theoretical
points such as class definitions. One drawback of the
Fisher-ratio based approach which we have not men-
tionned is that it assumes that the feature probability
densities are unimodal Gaussians. Clearly, this will
be an incorrect assumption for many features. Thus,
other criteria such as mutual information or conditional
mutual information might afford more flexibility in this
regard. Non-parametric cost criteria might also be use-
ful, especially when dealing with global features. This
is an avenue of research we are currently pursuing.
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