2010 International Conference on Pattern Recognition

Vector space embedding of undirected graphs with
fixed-cardinality vertex sequences for classification

Jonas Richiardi, Dimitri Van De Ville

Medical Image Processing Laboratory

L Ecole Polytechnique Fédérale de Lausanne

2 University of Geneva

Kaspar Riesen, Horst Bunke
Institute of Computer Science
and Applied Mathematics
University of Bern

{jonas.richiardi,dimitri.vandeville} @epfi.ch ~ {riesen,bunke} @iam.unibe.ch

Abstract

Simple weighted undirected graphs with a fixed
number of vertices and fized vertex orderings can
be used to represent data and patterns in a wide
variety of scientific and engineering domains. Clas-
sification of such graphs by existing graph matching
methods perform rather poorly because they do not
exploit their specificity. As an alternative, methods
relying on wvector-space embedding hold promising
potential. We propose two such techniques that can
be deployed as a front-end for any pattern recogni-
tion classifiers: one has low computational cost but
generates high-dimensional spaces, while the other
is more computationally demanding but can yield
relatively low-dimensional vector space representa-
tions. We show experimental results on an fMRI
brain state decoding task and discuss the shortfalls
of graph edit distance for the type of graph under
consideration.

1 Introduction

Graph representations offer a rich and expressive
framework for data modeling and manipulation. In
pattern recognition, their main advantage lies in
the possibility of encoding structural information,
as well as to vary object representation complexity
according to need (e.g.,adding intermediate vertices
in a graph depending on camera view angle). Even
when structural constraints limit their degrees of
freedom, graphs are a natural fit for representation
and analysis of a large variety of real-world phe-
nomena. Specifically, we concentrate on classifica-
tion of a family of undirected weighted graphs hav-
ing a fixed number of vertices and a fixed vertex or-
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dering, which we call graphs with fixed-cardinality
vertex sequences. This class of graphs can poten-
tially be used for problems with multiple signals
originating from a fixed number of sensors in a
fixed position, such as multi-channel EEG analysis,
where the number of scalp electrodes and their po-
sition over the scalp are fixed, multi-electrode array
(MEA) recordings of neuron population activity, or
connectivity analysis of functional magnetic reso-
nance imaging. This latter application will be the
focus of our experimental results.

In contrast to the case of vectors in normed vec-
tor spaces, where vector norms have a clear and
intuitive meaning, there is no “standard” method
of measuring distances between graphs. In fact,
a large number of graph matching methods have
been proposed to measure dissimilarity between
graphs [3]. Out of these, a commonly used one,
Graph edit distance (GED), is a robust and effi-
cient measure which is defined as the sum of costs
of elementary operations to transform efficiently
one graph into the other. However, for the class
of graphs considered here, which is subsumed by
the class of graphs with unique node labels [4],
no node insertion or deletion is possible, and the
GED between two graphs g; and g reduces to
d(g1,92) = [|C1| + |Ca| = 2|Col] + |Gy, where the
term between brackets accounts for the number
of connections present exclusively in either of the
graphs, and the C{, set contains connections with a
different label in the two graphs. We note that edge
weights are not taken into account, only the count
of the number of different edge weights. In the case
of complete graphs, where the only operation per-
mitted is edge substitution, GED further simplifies
to d(g1,92) = |C{|. In many practical situations,
edge weights are noisy and thus will almost never
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match, resulting in d(g1,g92) — (lgjl). Thus, while
GED and related similarity measures allow to com-
pute distances between graphs in general, they are
not sufficient for the class of graphs that we con-
sider and to provide a useful metric for subsequent
pattern recognition.

Embedding graphs into a vector space enables
access to the rich repository of algorithmic tools
from pattern analysis. A prominent class of graph
embedding is based on spectral methods (e.g. [6,
2]). While spectral methods are sensitive to struc-
tural errors for general graph matching, no such
problem exist for the class of graphs of interest
in this paper. However, eigenspace decomposition
is typically performed on the covariance matrix of
training vectors made from adjacency or Laplacian
matrices [10]. In domains where very little training
data is available, the covariance matrix is suscep-
tible to being very poorly estimated, yielding large
reconstruction error and poor decomposition.

In this paper, we propose two vector-space em-
bedding techniques tailored to graphs with fixed-
cardinality vertex sequences; these methods can be
used as a front-end to any pattern classifier. The
first one, in Section 2, has very low computational
complexity but generates high-dimensional vector
spaces. The second one, in Section 3, is more com-
putationally demanding but leads to lower dimen-
sionality. We propose experimental results on a
“brain decoding” task in Section 4 and conclude the
paper in Section 5.

2 Direct connection label sequence
embedding

A labeled simple graph g = (V, E,a, ) is a 4-
tuple consisting of a set of vertices V', a set of edges
E, and labeling functions « and (3 assigning respec-
tively vertex and edge labels. If unique node labels
exist [4], which for the purposes of graph matching
is equivalent to considering the set of vertices is or-
dered (it is a sequence) with a fixed ordering, the
“label representation” of a graph can be used. Es-
sentially, the set of vertices V is replaced by the set
of labels of vertices L = {a(v)|v € V}, the set of
edges FE is replaced by the set of connection between
labels C' = {(a(vi), a(vj))|(vi,v;) € E} = {ci5},
and the set of edge labels obtained by application
of the labelling function S(v) is directly mapped
through to the sequence of connection labels A. The
edge labelling function returns 0 if no correspond-
ing edge is part of the edge set. Edge weights in
weighted graphs can be represented directly in the
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adjacency matrix of the graph A, thus making it
real-valued instead of binary, or as the set of edge
labels A. The graph ¢ is uniquely determined by
the adjacency matrix A, and since the ordering of
vertices in ¢ is fixed and consistent because of the
properties of the class of graph under consideration,
A is also uniquely determined by g.

We propose to use the following simple embed-
ding procedure, related to the long-vector represen-
tation of weighted adjacency matrices [5]: since A
is symmetric, it is fully characterised by the upper
triangular part. For each graph, we thus generate a
vector-space embedding F : (|1§|) x 1 by vectorising
the edge weights of all the edges in the upper tri-
angular part of A. If A is binary and the weights
are encoded as connection labels, this embedding

is a bijective function A — R(‘gl). Note that this
differs from the embedding of [5] by not computing
a covariance matrix and subsequent eigendecompo-
sition.

The goal of this embedding is to yield a loss-
less vector-space representation of the graph. As
the final aim is classification, dimensionality reduc-
tion and overfitting prevention is left to subsequent
feature selection or to the classifier’s intrinsic regu-
larisation. In the case of non-complete graphs, vec-
tor elements corresponding to missing edges map to
zero. Classifiers thus have access to the complete
graph connection information.

3 Dissimilarity-based embedding

Recently, a new class of graph embedding pro-
cedures has been proposed which can be applied
to both directed and undirected graphs, as well
as to graphs with arbitrary labels on their vertices
and/or edges, and is robust to structural errors [9].
The idea of this approach stems from the seminal
work done by Duin and Pekalska [7] who proposed
dissimilarities for pattern representation, recently
generalized to the domain of graphs [9].

The key idea of this approach is to use the dis-
tances of an input graph g to a number of train-
ing graphs, termed prototype graphs, as a vectorial
description of g. Assume we have a set of sam-
ple graphs, T = {g,...,gn} from some graph do-
main G and an arbitrary graph dissimilarity mea-
sure d : G x G — R. After selecting a set of
prototypical graphs P C T, we compute the dis-
similarity of a given input graph g to each proto-
type graph p; € P. Given n prototypes, i.e. P =
{p1,...,pn}, this procedure leads to n dissimilari-
ties, d1 = d(g,p1),-..,dn = d(g,pn), which can be



arranged in an n-dimensional vector (dy,...,d,).
Thus, the mapping ¢ : G — R" is defined as the
function

@Zf(g): (d(gvpl)?"'ad(gapn))a (1)

where d(g,p;) is any graph dissimilarity measure
between graph g and the i-th prototype graph.

3.1 Dissimilarity of graphs with fixed-
cardinality vertex sequences

For the class of graphs that we consider, the only
differences between graphs are edge substitutions,
corresponding to edge weights (connection labels)
differences, and (potentially) edge deletions. We
therefore define the dissimilarity measure between
connection c¢;; in the connection set C' of graph g
and the corresponding connection c,’ij in the connec-
tion set C” of graph ¢’ as

. P .
d(cij, ciy) = { |I€<Z’j) Blodl eucce,eo
(2)
where K is a relatively large constant. This mea-
sure penalises missing connections more than con-
nections with different edge weights.

The dissimilarity measure between a graph g
with connection set C;, = {¢;;} and a prototype
graph p with connection set C, = {cj;} can then
be defined as

otherwise,

Ll Iz
d(g,p) =Y Y dlci,cy) (3)
i=1 j=it+1

3.2 Prototype selection

Provided sufficient training data is at hand, the
selection of the n prototypes P = {p1,...,pn} is
a critical issue in graph embedding since not only
the prototypes p; € P themselves but also their
number 7 affect the resulting graph mapping ¢ (-)
and thus the performance of the corresponding pat-
tern recognition algorithm, as reported in various
papers [9, 8]. Because of the dearth of data in our
application, we currently use all training graphs (in
cross-validation) as prototypes. Feature selection
can be carried out in vector space as a later stage
to eliminate uninformative or noisy components of
the dissimilarity vector [8].

4 Classification experiments

The dataset consists of spatiotemporal fMRI
data from 15 subjects (GR-EPI sequence,
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TR/TE/FA = 1.1s/27ms/90°, matrix = 64x64,
voxel size = 3.75x3.75x4.2mm?).  Stimulation
was done with alternating blocks of movie ex-
cerpts (50s) and resting periods (90s). There
are 9 movie blocks and 9 resting blocks. We
concatenate blocks from the same condition after
linear detrending, and use whole-brain atlasing
(90 regions) to average timecourses, yielding 90
time-series/subject/condition.  Each time-series
is filtered into four wavelet subbands using a
non-subsampled orthogonal discrete wavelet trans-
form (4 vanishing moments). Pairwise temporal
correlation (Pearson product-moment) is computed
on each of the filtered time-courses, yielding in
total four 90x90 correlation matrices reflecting
co-activation of spatially distinct brain regions at
different time scales.

The 90 regions can be represented as vertices
of a functional connectivity graph, while the cor-
relation coefficients correspond directly to edge
weights or edge labels. Thus, for each subject, 4
subband-specific graphs are obtained for each con-
dition (resting and movies). The two-class classi-
fication problem is to be able to infer whether the
subject is watching a movie or resting based on the
connectivity graphs only.

For both embeddings, we perform tests with two
types of classifiers: an ensemble of 21 boosted func-
tional trees classifiers (FT21), and a linear kernel
SVM using within-fold cost parameter optimisation
(SVM). For dissimilarity-based embedding, we per-
form additional tests using a multi-layer perceptron
(MLP) trained with backpropagation. All classi-
fiers are implemented in Weka [11]. Stratified leave-
one-subject-out accuracy results are given in Ta-
ble 1, where 100% accuracy is for 30 graphs, 15
from each class.

Graphs constructed in lower-frequency subbands
are presumably easier to classify because resting-
state connectivity is known to be particularly
strong at these frequencies. The higher accuracy
obtained overall by direct connection label sequence
embedding can be attributed to the very small
amount of training data, yielding a low number of
prototype graphs to use for dissimilarity-based em-
bedding (DBE). Considering the low dimensional-
ity of DBE (28), performance is quite remarkable.

5 Conclusion

In this paper, we have shown that when
graphs have fixed-cardinality vertex sequences, ex-
isting general-purpose graph-theoretical methods



| Subband | Classifier | DE | DBE |
1 (0.23-0.45 Hz) SVM 53% | 53%
FT21 53% | 57%
MLP — 53%
2 (0.11-0.23 Hz) | SVM | 87% | 60%
FT21 80% 60%
MLP — 63%
3 (0.06-0.11 Hz) SVM 93% | 83%
FT21 93% | 7%
MLP — 87%
4 (0.03-0.06 Hz) SVM 97% | 83%
FT21 83% | 67%
MLP — 83%

Table 1. Accuracy for different embed-
dings. DE: direct connection label se-
quence embedding, DBE: dissimilarity-
based embedding.

for graph matching, such as GED, may theoreti-
cally fail. We suspect that this is also the case for
other commonly used methods such as maximum
common subgraph (MCS); in this particular case
there are conditions under which MCS is equiva-
lent to GED [1], so it is unlikely that graphs in
this family will be successfully classified. We have
proposed two vector-space embeddings that allow
effective classification of this type of graphs. The
first one is lossless (but high-dimensional) and re-
quires subsequent feature selection or regularisation
of the classifier. Given a prototype set smaller than
the number of vertices in a complete graph, the
second one intrinsically reduces the dimensionality
using the recent concept of dissimilarity-based rep-
resentation. We have demonstrated the feasibility
of both approaches using experimental results on an
fMRI brain decoding task. In the field of brain de-
coding, the use of connectivity measures for classifi-
cation is novel with respect to existing classification
techniques that rely on voxels’ activation levels. It
is likely that this kind of approach will be useful
for cognitive neurosciences (insight in interactions
between brain regions) and for clinical practice (al-
terations in functional connectivity are present in a
variety of brain disorders such as Alzheimer’s dis-
ease, schizophrenia, and others).

Future work will include testing the approach on
other datasets such as whole-scalp EEG recordings
and geoscience datasets, exploring new embeddings
for this type of graphs, and empirical and theoret-
ical comparison with other embedding techniques
such as spectral methods.
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