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Abstract

Speaker verification is a biometric identity verification technique whose performance can be

severely degraded by the presence of noise. Using a coherent notation, we reformulate and review

several methods which have been proposed to quantify the uncertainty in verification results, some

with a view to coping with the effects of mismatched training-testing environments. We also include a

recently proposed method, which is firmly rooted in a probabilistic approach and interpretation, and

explicitly measures signal quality before assigning a reliability value to the speaker verification

classifier’s decision. We evaluate the performance of the confidence and reliability measures over a

noisy 251-users database, showing that taking into account signal-domain quality can lead to better

accuracy in prediction of classifier errors. We discuss possible strategies for using the measures in a

speaker verification system, balancing acquisition duration and verification error rate.

r 2006 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

Keywords: Confidence estimation; Reliability estimation; Error modelling; Speaker verification; Bayesian

networks
1. Introduction

The goal of biometric identity verification is to assert whether a certain person is indeed
whom he/she claims to be, based on behavioural or biological traits, also known as
biometric modalities. Speech is a personal trait that can be used for biometric user identity
0.00 r 2006 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
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verification and benefits from ease of use for the end user, cheap sensor hardware, a long
research history, and can be deployed in a variety of environments.

Speaker verification performance is however very dependent on noise, in addition to
intra-speaker variability which is strongly influenced by health factors, emotional state,
and inter-session time. In the context of this paper, we define noise as ‘‘any unwanted
change in a signal’’. Noise can be categorised as stationary, meaning its characteristics do
not change with time, or non-stationary, meaning noise is itself a dynamic, time-dependent
phenomenon. The influence of noise on clean speech can be modelled by the type of
interaction the noise and speech signals have: additive noise is, as its name suggests, added
to the speech signal. An example of additive stationary noise is fan noise from a desktop
PC, and an example of additive non-stationary noise is a door slamming or mouth clicks
(such as produced by the parting of the lips). Convolutional noise is due to the physical
transmission chain of speech and can be caused by acoustical characteristics of the ambient
environment, transducer operation, signal conditioning, signal processing, signal coding,
and transmission channel. An example of stationary convolutional effect is caused by
different frequency responses and self-noises characteristics of microphones, while non-
stationary convolutional noise can be caused by dynamically changing reverberation
conditions (due to room occupation change, pitch differences, etc.). In the present paper,
we focus on stationary and non-stationary additive noise.

It is well known that the statistical distribution of common speech features such as
MFCCs (Mel-Frequency Cepstral Coefficients) is significantly distorted when the original
clean speech signal is subjected to additive noise [1,2] or convolutional noise [3]. Thus, the
scores output from the classifier of a speaker verification system based on models of
statistical distribution of features in clean acoustic conditions will notably change when
presented with feature vectors corrupted by noise. In this situation some impostors will be
able to obtain higher scores, and, respectively, some clients will obtain lower scores
than in clean conditions, hence increasing false accept (FA) or false reject (FR) rates.
To avoid such incorrect decisions the work presented in this paper aims at quantifying the
amount of trust that should be put in a speaker verification classifier’s decision, taking
into account acoustic environmental conditions and behaviour of the classifier on
evaluation data.

The problem of ‘‘knowing when the classifier is right’’, has seen numerous incarnations
in very diverse areas and applications of pattern recognition, of which we will give but a
few examples here. In handwriting recognition, Pitrelli and Perrone [4] have explored a
number of confidence measures, the best of which encode a measure of the dispersion in
scores of the top candidate words (in which case the confidence measures are for instance
negative entropy, selectivity, or score ratios between candidates). In image orientation
determination, Luo and Boutell [5] use various specialised object detectors (faces, grass,
etc.) and low-level image features combined probabilistically to produce a confidence value
which can be used to reject the detected image orientation. In protein localisation, Huang
and Li [6] use a ‘‘reliability index’’ to estimate the certainty of the classification decision,
which is computed based on the difference in score between the top and the second
candidate class. In multimodal audio–video source localisation, Lo et al. [7] use cross-
correlation of acoustic power per sector in a microphone array with reference profiles and
amount of change in foreground-to-background ratio to derive reliability of audio
localisation and motion detection. Finally, in speech recognition, confidence measures
have seen wide usage in the past 10 years, and a large number of methods have been
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proposed incorporating evidence from the acoustic, grammatical, pragmatical and
classifier output domains [8].
In the remainder of this paper, we focus the discussion on confidence measures in

speaker verification (Section 2), and we divide approaches into two groups depending on
the domain of the evidence they are based on (classifier-domain only or multiple domains).
We then explain in more details the operation of a recently proposed approach belonging
to the second group, called reliability estimation (Section 3), before giving examples of how
the confidence and reliability measures can be used (Section 4). We present experimental
results for confidence and reliability approaches on a noisy database (Section 5), and finish
with concluding remarks (Section 6).
2. Confidence measures in speaker verification

In speaker verification, confidence measures have been used for various applications and
purposes. In forensic cases, they have been proposed to indicate the degree of belief the
court should place in a classifier’s output score [9,10]. In on-line speaker model adaptation,
it has been suggested to use them to perform unsupervised selection of adaptation data
[11]. In multimodal verification, confidence measures are increasingly used to provide
weights for the fusion algorithm [12]. In text-independent speaker recognition tasks, some
authors have proposed their use to defer the decision to manual or automated post-
processing [13].
Regardless of the application, we distinguish two broad types of confidence measures in

speaker verification: those that use only data provided by the classifier, such as likelihood
scores, likelihood ratio scores, or hard decisions, and those that use auxiliary information
from multiple domains, for instance signal-domain quantities such as fundamental
frequency or signal-to-noise ratio (SNR) combined with classifier-domain information.
2.1. Confidence measures with classifier-domain data

In the following discussion we strive to present approaches keeping a consistent notation
throughout. To this end, we first define variables of interest for speaker identity
verification. TID (True user IDentity), corresponds to the ground truth, and CID

(Classified user IDentity) corresponds to the speaker verification classifier’s decision.
TID ¼ 1 represents the event ‘‘the system user is a client’’, while TID ¼ 0 corresponds to
the event ‘‘the system user is an impostor’’. CID ¼ f0; 1g corresponds to the events ‘‘the
classifier accepts the identity claim’’ (CID ¼ 1) and ‘‘the classifier rejects the identity
claim’’ (CID ¼ 0). As a shorthand, we introduce another binary variable DR correspond-
ing to ‘‘decision reliability’’, where DR ¼ 1 represents the statement ‘‘the classifier is
correct’’ and DR ¼ 0 represents the opposite statement. In Boolean logic terms,
DR ¼ CID� TID. A fundamental quantity in speaker verification is the log-likelihood
ratio score, which we denote Sc. It represents the log of the ratio of the likelihood of the
utterance (biometric presentation) given a particular client model to the likelihood of that
presentation given a background model.
The distribution of verification scores Sc can serve as a basis for simple confidence

measures. Nakasone and Beck [14] propose a Bayesian confidence measure which can be
expressed in speaker verification terms as the posterior probability that the utterance is
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from a client given the score:

PðTID ¼ 1jScÞ ¼
PðTID ¼ 1ÞPðScjTID ¼ 1ÞPid¼1

id¼0PðTID ¼ idÞPðScjTID ¼ idÞ
, (1)

where id represents either an impostor (id ¼ 0Þ or a client (id ¼ 1Þ. By assuming that the
client and impostor score distributions are Gaussian (which is often not true), they then
define the confidence measure by fitting a logistic function to the posterior probability
represented by Eq. (1):

CM logisticðScÞ ¼
1

1þ e�ðb0þb1ScÞ
, (2)

where in our implementation the b exponential parameters are learned using a least-
squares method. We adapt this measure from the forensic context by also computing
PðTID ¼ 0jScÞ with a change of numerator in Eq. (1), then fitting a decreasing sigmoid
1� CM logistic to that posterior. This allows us to use this measure for the negative
identification case also. One further change is needed since the ground truth is not
available during testing. Thus, we replace TID with the classifier’s opinion CID, and use
the appropriate measure at runtime depending on the classification result.

This measure presents two main drawbacks: it assumes Gaussian class-conditional
distributions for scores, and does not take into account the actual error distributions of the
classifier. These two drawbacks can also be seen as strong structural constraints that
prevent overfitting and mean that this model may generalise better given a small amount of
training data.

In speaker identification, Gish and Schmidt [13] rely on the reasonable assumption that
the scores of the top candidates in the case of correct classification is higher than those of
incorrectly identified candidates. Their modelling is based on two distributions: The
distribution of scores for incorrect classifications PðScjDR ¼ 0Þ (hereafter abbreviated
PwcðScÞ) and correct classifications PðScjDR ¼ 1Þ1 (hereafter abbreviated PccðScÞ). This is
an interesting approach, since most confidence measures in speaker verification, and
indeed in other fields of pattern recognition, are centred on the class-conditional
distributions of scores. They propose two methods to evaluate confidence in speaker
identification applications, one based on significance testing, and the other on a Bayesian
posterior probability PðDR ¼ 1jScÞ.

The confidence measure based on significance testing is expressed thus:

CMsigðScÞ ¼ 1�

Z 1
Sc

PwcðScÞdSc. (3)

However, this significance-based confidence measure cannot be readily adapted to the
verification case, because it essentially measures ‘‘how far on the tail of the distribution of
incorrect classification scores the observed score occurs’’ (see Fig. 1(a)), which is
appropriate for identification, but not for verification. Indeed, while it can be expected and
assumed that the mean of the PwcðScÞ distribution will be lower than the mean of the
PccðScÞ distribution, in verification the errors will be clustered around the threshold and
1It should be noted that in the identification context Sc is an identification score, not a log-likelihood ratio as

used in verification. Also, the semantics of DR change to DR ¼ 1 if the candidate corresponding to the top

identification score is indeed the target, and DR ¼ 0 otherwise.
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Fig. 1. Idealised score distributions for classifier errors and correct decisions in identification and verification: (a)

idealised score distributions for correct identification (PccðScÞ) and identification error (PwcðScÞ). The solid grey

area under the distribution of identification error scores corresponds to the second term in Eq. (3), where a

particular identification score Sci determines the lower bound of integration; (b) idealised graph of correct

verification (PccðScÞ) and verification error (PwcðScÞ) score distributions showing the four sub-distributions:

correct reject (CR), false reject (FR), false accept (FA), and correct accept (CA). Note that in reality the sub-

distributions are likely to be non-Gaussian and overlap in a different way.

J. Richiardi et al. / Journal of the Franklin Institute 343 (2006) 574–595578
correct decisions can be taken both below the threshold (correct reject) and above the
threshold (correct accept). Thus, the confidence measure would need to be symmetric
around the threshold, to account for false reject errors. A second important observation is
that a confidence measure based on the PccðScÞ and PwcðScÞ distributions in verification



ARTICLE IN PRESS
J. Richiardi et al. / Journal of the Franklin Institute 343 (2006) 574–595 579
needs to take into account the bimodal nature of the correct decision score distributions.
This point is illustrated in Fig. 1(b).

Gish and Schmidt also propose a Bayesian confidence measure, which quantifies the
posterior probability that the identification decision is correct given the score:

CMBayesðScÞ ¼ PðDR ¼ 1jScÞ ¼
pccPccðScÞ

pccPccðScÞ þ pwcPwcðScÞ
, (4)

where pcc is the prior probability that the classification is correct, and pwc is the prior
probability that the classification is wrong. In identification, this can be estimated from
results on an evaluation set. This measure can be applied in verification, but to set the
priors an operating point must be chosen which corresponds to a particular threshold
setting. An example for this is to choose the percentage of errors on an evaluation set,
setting pwc ¼ NðDR ¼ 0Þ=N; pcc ¼ 1� pwc (where N is the total number of test cases in the
evaluation set) ensures proper normalisation. For a well-performing speaker verification
system, the ratio pcc=pwc is 10 or more. Thus, the confidence measure will be biased high
and will most likely report high confidence. This can be compensated by using non-
informative priors, meaning the confidence measure will be based only on the score
distributions, without taking into account the priors. If the PccðScÞ and PwcðScÞ score
distributions were modelled as mixture distributions, this confidence measure should
provide good accuracy when applied to verification tasks given that the score distributions
are trained on an evaluation set which comes from an environment acoustically similar to
that of the test set. However, in this paper we keep with the original definition of the
measure for speaker identification and model scores using one normal distribution for each
of PccðScÞ and PwcðScÞ.

Poh and Bengio [12] use the FR rate for a certain score (taken as threshold) subtracted
from the FA rate for the same threshold. Thus, the closer the score is to the decision
threshold, the lower the confidence:

CMmarginðScÞ ¼ jFARðScÞ � FRRðScÞj. (5)

The client and impostor distributions are trained on an evaluation set. To avoid condition
mismatch leading to erroneous test results, these functions can be trained on an evaluation
set using conditions similar to those present in test conditions. This approach is interesting
because it takes into account the distribution of errors with respect to a score, and it is
quite generic: the sources of noise (both additive and convolutional) are subsumed and
abstracted by their effects on the score distributions. This is far less complex than trying to
model noise and distortions in the signal domain. The authors then show a theoretical
framework for combining this confidence measure with a speech quality measure (QM) in
order to enhance fusion in multimodal biometrics.

As hinted by the notation used above, the confidence measures can be used as functions
of the verification score. Thus, to obtain a better intuitive understanding of the various
confidence measures presented, it is interesting to plot a graph of the output of the function
with respect to the input score. This is depicted in Fig. 2. We also introduce the posterior of
the reliability approach which will be presented in Section 3. Since it takes into account the
amount of noise in the signal, this posterior will change dynamically with each
presentation, with the concave part changing shape with increasing levels of noise.

A few other methods have been used to estimate confidence in speaker verification or
identification (notably [15,16,11]), but not all of these are bounded to the ½0; 1� interval and
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Fig. 2. Output of confidence and reliability measures with respect to presentation score. The reliability curve is for

an artificially fixed signal-to-noise ratio of 100 dB.
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would need to be transformed (for instance using sigmoid mapping) to facilitate
comparison with the other methods.
This brief presentation of classifier-domain confidence measures in speaker verification

and identification reviewed only text-independent confidence measures; in passing we
should point out that many confidence measures defined in speech recognition can also be
applied to text-dependent speaker verification (see for instance [17]).

2.2. Confidence measures with data from multiple domains

Some authors have also seen the need to incorporate other sources of information than
just the classifier’s output into their confidence estimate. For instance, it is widely
recognised that shorter test utterances give less reliable results. Likewise, noise in the signal
domain contributes to augmenting the error rate of speaker verification systems.
Recently, Campbell et al. [10] have used signal-domain data (utterance duration,

channel-type label and SNR) in addition to utterance score to estimate a confidence for
each score. Since the application is in forensics, the task is to compare whether two
utterances come from the same speaker, using a speaker verification system. Thus, this
confidence measure can be expressed as ‘‘the a posteriori probability that the two
utterances come from the same speaker’’. The confidence model is a multi-layer perceptron
(MLP), bringing the benefit that the shape of the distributions does not have to be assumed
a priori.
In speaker identification, Huggins and Grieco [18] also take into account additional

information beyond signal-domain quantities, such as amount of overlap between models
in feature space. Their main indication of confidence is a combination of training/testing
utterance duration and SNR. Their method is based on computing error rates with respect
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to seven discrete SNR levels (pink noise mixed in from 6 to 24 dB) for 13 different
utterance durations, thus resulting in 91 regression models indexed by training and testing
utterance duration. The information about the amount of overlap between models can
then be factored in by computing another regression on top of the basic duration/SNR
combination, which then results in a prediction error of 4:2� 3:3% on a 40-speakers
database. One issue that is reported is that the model may be overly relying on SNR as its
main indication of classifier performance, as the accuracy of confidence prediction drops
when training and testing environments are matched. It is not clear how additional
measures of quality would be added to the model. The confidence measure derived does
not lend itself easily to a probabilistic interpretation.

Richiardi et al. [19,20] have proposed a measure of confidence taking into account
signal-domain QMs in the form of different estimations of the SNR. Their confidence is
estimated by a graphical model trained on score distributions produced during erroneous
and correct decisions, and the signal QMs just mentioned. We will now present more
details about this last method.

3. Classifier decision reliability in speaker verification

The approach we propose2 estimates a quantity, the reliability of the classifier’s decision,
which can be phrased as ‘‘the probability of having taken a correct classification decision
given available evidence’’. The evidence we use and the modelling framework differ from
the ‘‘confidence measure’’ approaches we reviewed in Section 2 in several ways, some of
which we will expand on here. We define the estimation of reliability as an interpretable
probabilistic method providing an output in the form of a posterior probability, based on
combining classifier error modelling and signal-domain information.

Our approach combines information about both the acoustic environment and the
classifier behaviour in order to provide decision reliability information in speaker
verification. In this context, the result of speaker verification is directly influenced by the
real state of the user identity (client or impostor) and the state of the decision reliability
measure, given additional evidence about the environmental acoustic conditions. Since the
intercausal relations of these two factors cannot be established deterministically, we use a
probabilistic reliability measure. Instead of being assigned a particular value, a
probabilistic reliability measure is defined by a distribution over its possible values. In
our approach we use Bayesian networks (BNs) for inferring the decision reliability
distribution.

3.1. Bayesian networks for reliability estimation

BNs, also called belief networks, are graphical models used to describe a joint
probability distribution (pdf) over a finite set of random variables [21], and are completely
defined by the triple ðV ;A;CÞ, where V is the set of nodes associated with the random
variables, A is the set of arcs and C is the set of conditional probability distributions
associated with the nodes’ variables. The arcs between the nodes point from all parent
variables to their children variables. The intuition behind directionality represents the fact
that the parent variables can directly influence their children and this influence can be
2This paper is an extension to the work presented at ICASSP 2005 [19].
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interpreted as a cause-effect relationship. The joint pdf represented by the BN can be
written as a product of all nodes’ CPDs (conditional probability densities of each node
given its parents). Finally, the basic task for any BN is to perform inference, that is to
compute the posterior distribution for a set of ‘‘query’’ variables, given some observed
event, i.e. evidence for some observed variables.
The BN in Fig. 3(a) depicts an influence model for the variables TID, CID and DR.

In this network, the fact that the user’s identity claim is true or not can be seen as the cause
of a particular classified user identity value, unless the classifier performs at random. That
is, for a working speaker verification system it is more likely that a client attempt results in
CID ¼ 1 than CID ¼ 0. The decision reliability can be seen as an alternative cause that
might also point at errors in the CID value. For example CID ¼ 1 can be explained by
TID ¼ 1 and DR ¼ 1 (the classifier makes a correct verification decision because the user is
a client and the decision is reliable) or TID ¼ 0 and DR ¼ 0 (the classifier makes a wrong
verification decision because the user is an impostor and the decision is unreliable).
In this case, having the set of nodes associated with the random variables

V ¼ ðTID;CID;DRÞ, and taking into account the arcs defined in Fig. 3(a), the joint pdf
over V can be written as

PðTID;CID;DRÞ ¼ PðDRÞPðCIDjDR;TIDÞPðTIDÞ. (6)

Since the variables TID and DR are not observable during speaker verification, we need to
provide additional sources of information that can be observed and can provide evidence
in favour of particular ðTID;DRÞ values. The verification score (likelihood ratio, see
Section 5.2) is known to carry information about the state of the user identity (client/
impostor), while a signal QM can be used to provide evidence for the DR variable. For
example, the SNR of the speech signal can be used to measure the level of the acoustic
noise. Therefore, we define the two continuous variables Sc and QM, corresponding to the
score of the verification and the QM for the given modality (SNR in the case of speech).
DR, CID and TID can be seen as causes for the observed Sc value, while DR can be seen as
the cause for QM values.
The final version of the BN incorporating all these variables V ¼ ðTID;CID;DR;

Sc;QMÞ is depicted in Fig. 3(b). Discrete variables are drawn as squares, and circles are
used for the continuous ones. The CPD of discrete variables is represented by a probability
table, while continuous variables make use of arbitrary parametric CPDs. We use
conditional Gaussian distributions.
DRTID

CID QM

DR

Sc

TID

CID

(a) (b)

Fig. 3. Bayesian networks for decision reliability estimation: (a) reliability model with classifier-domain evidence;

(b) full reliability model with score-domain and signal-domain evidence.
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In our case the posterior

RelðSc;CID;QMÞ ¼ PðDRjCID;Sc;QMÞ (7)

is the distribution of decision reliability measure. To mark an observed variable in the
graphical representation of the BN we use shading, and unobserved variables are left
white. Once the CPD functions for all the nodes given their parents are defined, exact or
approximate inference on each node in the network can be performed. Since the number
of variables in our case is small, exact inference on a junction tree algorithm can be
applied [21].

A similar architecture has been used by Toyama and Horvitz [22] for a head tracking
application in computer vision. In their case, several visual tracking algorithms are
combined and the reliability of each is estimated before taking a final decision. One
difference with our approach is that the domain of QM we use is directly related to the
signal, and is not dependent on the classification algorithm, whereas they identify ‘‘failure
modes’’ for their tracking algorithms and use these specificities as features. A second
difference is that we explicitly define and label DR as a binary variable during training with
a fixed semantic meaning, rather than keeping the value for this node hidden also during
training. Lastly, our topology has additional arcs not found in [22].

Before the BN can be used to produce reliability estimates, the conditional distributions
defined by its topology must be learned.

3.2. Training procedure for Bayesian network reliability estimator

In order to perform inference on PðDRjCID;Sc;QMÞ the conditional probability
distribution parameters for the network variables have to be learned from training
examples. In the case of fully observable variables in the training set, the estimation can be
done with random initialization and maximum likelihood (ML) training [21]. After the
training, the posterior distribution PðDRjCID;Sc;QMÞ can be used as a probabilistic
measure of speaker verification decision reliability.

The training setup for the BN is depicted in Fig. 4. A speaker verification system
provides values for the CID, Sc variables, and an acoustic environmental condition
measure provides the QM values. We use an SNR-related measure described in Section 3.3.
To simulate the effects of a degraded acoustic environment, babble-type noise
corresponding to a possible deployment environment with SNRs following a random
uniform distribution from 5 to 55 dB is added to the database. This noisy speech data is an
input source for the verification system, which calculates Sc and sets CID according to the
threshold for that user. According to the match between the true identity of the speaker
(TID) and the speaker verifier output (CID), we label DR in the BN training data as being
‘‘true’’ (TID ¼ CID then DR ¼ 1) or ‘‘false’’ (TIDaCID then DR ¼ 0). In that way, we
model the relationship between verification errors and environmental conditions. We
assume the speaker verification classifier performs above chance level in clean conditions.

Since we also assume the speaker verification classifier performs above chance in noisy
conditions, the data set used for BN training will by definition always contain less data
labelled DR ¼ 0 (TIDaCID) than data labelled DR ¼ 1. An additional source of
imbalance is that for most biometric databases, the size of client data (TID ¼ 1) is smaller
than impostor data (TID ¼ 0); with the random impostors technique (‘‘pseudo-
impostors’’) any other user can serve as an impostor to a particular user.
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During training of the BN, the prior probabilities over the DR and TID variables are
assigned according to the counts of data samples corresponding to the different DR or TID

variable realisations. Thus, if the BN is trained without special care, the learned prior
probabilities on the DR and TID variables will be mismatched for client and impostor access
because the counts for impostor accesses will be much higher. The training of a reliability
measure suffers from a double imbalance problem, since both the final class of interest (DR)
and an important factor in system (impostor or client access) are by nature imbalanced. Since
we do not want to bias the final posteriors over the DR values on the number of data counts,
it is important to balance the number of examples for client and impostor access (TID

variable). In addition, because DR is a competing cause for the explanation of CID it is also
important to balance the number of examples with respect to the DR values.
Three approaches exist to handle the imbalanced sample problem: undersample the class

with the largest number of training examples, oversample the class with the smallest
number of training samples, or bias the learning procedure [23]. In our method, we use the
latter by fixing both the PðTIDÞ and PðDRÞ priors to be uniform (0.5). The BN formulation
offers an easy way to accomplish this, by simply ‘‘clamping’’ the nodes whose probability
distributions we do not wish to learn from data.

3.3. Taking acoustic conditions into account

To measure the acoustic conditions for the speech we use a SNR-related measure. The
SNR can be defined as the ratio of the average energy of the speech signal divided by the
average energy of the acoustic noise in dB. As we use a single-channel speech signal we
estimate these energies based on a voice activity detection (VAD) and corresponding
speech/pause segmentation. The VAD algorithm is based on the ‘‘Murphy algorithm’’
described in [24]. We then assume that the average energy of pauses is associated with that
of noise. An SNR-related signal QM is given by the formula:

QM ¼ 10 log10

PN
i¼1IsðiÞs2ðiÞPN
i¼1InðiÞs2ðiÞ

, (8)
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Table 1

Percentage of noise samples classified as speech (NASm), percentage of speech samples classified as noise (SANm),

and total classification error (Rm)

NASm (%) SANm (%) Rm (%)

13.03 11.45 12.47

All results are averaged over the utterances in the individuals set of the CUAVE database.
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where fsðiÞg; i ¼ 1; . . . ;N is the acquired speech signal containing N samples, IsðiÞ and InðiÞ

are the indicator functions of the current sample sðiÞ being speech or noise during pauses
(e.g. IsðiÞ ¼ 1 if sðiÞ is a speech sample, IsðiÞ ¼ 0 otherwise) as reported by the voice activity
detector.

Since the SNR estimate depends on the speech/pause segmentation, we evaluated the
performance of this VAD on the ‘‘individuals’’ set of the CUAVE database [25]. This is a
labelled database containing 36 individual users, both male and female, each providing
utterances of separated digits for about 2min. The performance is computed in terms of
four quantities [26]: front-end clipping (FEC), indicating speech misclassified as noise due to
the transition from noise to speech. Mid-speech clipping (MSC) indicates speech
misclassified as noise during a speech period. Noise classified as speech when the signal
transitions from speech to noise is denoted OVER. Finally, noise that is classified as speech
during a noise period is denoted NDS. We simplify the evaluation of performance by
reporting three joint quantities: noise classified as speech (NAS ¼ OVERþNDS), speech
classified as noise (SAN ¼ FEC þMSC), and total error rate R which is the number of
signal samples misclassified, no matter whether they were speech or noise. These three
quantities are evaluated for each file in the CUAVE database (36 files) and the average is
presented in Table 1. It should be noted that the majority of errors are made on three
particular files (subjects), and that the files have a high SNR. Therefore, the VAD will be
less accurate on noisy data.

The BN defined is flexible enough to accommodate several speech signal QMs. Indeed,
the estimate used is based on energy and may not provide consistent speech/pause
segmentation boundaries in very noisy conditions, thus defeating the purpose of estimating
the SNR in the first place. An interesting extension is to use more robust segmentation
algorithms, such as those based on entropy [27], to augment the QM scalar and turn it into
a vector of QMs. This simply makes the corresponding Gaussian QM node multivariate
instead of univariate [20].

4. Using reliability and confidence measures in speaker verification

4.1. Classification with the reject option

Many decision errors in biometric verification are due to ergonomic factors rather than
algorithmic weaknesses. For instance, in iris and face verification improper distance and
centering of the image can significantly degrade verification accuracy. In speech-based
verification, distance from the microphone and speaking volume are important factors. In
this section, we propose that the best strategy to cope with uncertain classification results is
to re-acquire the signal up to N times rather than try to compensate signal-domain noise by
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other means. This idea is present in other fields of pattern recognition such as optical
character recognition, where an example is that the second-stage recogniser can reject the
character segmentation proposed by the preprocessing module if the confidence value
associated to it is too low [28].
In an interactive speaker verification system, the user could be asked to move closer to

the microphone if the SNR is too low, or the operator could be informed that verification
results for presentation n are unreliable. In this case, performing sequential repair only if
needed presents the advantage of minimising the amount of interaction between the user
and the system, thus speeding up the verification process. The final classifier decision FCID

can then be presented as a definitive verification result.
The sequential repair strategy outlined in Fig. 5 is equivalent to doing intra-modal

fusion with binary weights at the score level, where the score of the unreliable
presentation(s) gets a weight of 0 and the reliable presentation gets a weight of 1. Instead
of throwing away all the information provided by the first presentation, it is possible to
combine it with the second presentation. A simple scheme is to weight each presentation
score by its corresponding normalised reliability value to derive the final (fused) score:

Sc ¼
X

n

RelðScnÞ � Scn, (9)

where the normalised reliability values are obtained in the following fashion:

RelðScnÞ ¼
PðDR ¼ 1jCIDn;Scn;QMnÞP
nPðDR ¼ 1jCIDn;Scn;QMnÞ

. (10)

In this case, the decision to acquire a new presentation would still be governed by the
insufficient reliability of the first presentation. The advantage of this scheme over a scheme
that would always acquire two presentations is that the interaction time with the speaker
verification system can be minimised. By setting the reliability threshold, it is possible to
bias the system towards being more tolerant of low reliabilities (resulting in higher error
rates), or less tolerant (resulting in longer interaction time with the system for users).
4.2. Interpretation of strength of evidence in forensic applications

Another use for the reliability measure is as a tool to help the forensic expert quantify
the degree of trust that she should put in the opinion given by an automatic system.
The main goal of forensic speaker recognition is to interpret evidence material in the

course of a criminal investigation. In the case of questioned recording (trace), the evidence
does not consist in speech itself, but in the quantified degree of similarity between speaker
dependent features extracted from the trace, and speaker dependent features extracted
from recorded speech of a suspect, represented by his/her model. In an automatic
approach, this similarity measure is quantified by a similarity score (e.g. log-likelihood if
the suspected speaker is represented by Gaussian mixture model (GMM)).
The calculated value of evidence does not allow the forensic expert alone to make an

inference on the identity of the speaker. It can be done using the strength of evidence,
expressed in terms of the likelihood ratio of the evidence given two competing hypotheses:
(1) the suspected speaker is the source of the questioned recording (TID ¼ id), (2) the
speaker at the origin of the questioned recording is not the suspected speaker (TIDaid).
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START

n=1

Acquire presentation
On

Classify On:
CID(n)={0,1}

Estimate reliability:
Rel(n)=P(DR=1|evidence(On))

Rel(n) > 0.5

FCID=CID(n)

END

n ≤ N

FCID=CID(argmax Rel(n))n

no

yes

yes

no

n=n+1

Fig. 5. Sequential repair sequence for reject option.
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The likelihood ratio calculated in the odds form of Bayes’ theorem (LR in Eq. (11) below)
summarizes the statement of the forensic expert in the casework [29].

The odds form of Bayes’ theorem in Eq. (11) shows how new data (evidence) can be
combined with prior background knowledge (prior odds (province of the court)) to give
posterior odds (province of the court) for judicial outcomes. The prior odds cannot be set
by the forensic expert because she has no access to the whole prior background knowledge.

PðTID ¼ idjEÞ

1� PðTID ¼ idjEÞ
¼

PðTID ¼ idÞ

1� PðTID ¼ idÞ
�

PðEjTID ¼ idÞ

PðEjTIDaidÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
LR

. (11)
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Consequently, the greatest interest to the court is the extent to which the likelihood ratios
correctly discriminate ‘‘same speaker and different-speaker’’ pairs under operating
conditions similar to those as regards to the case in hand. If the prior odds can be
estimated by the court, evaluating confidence and reliability in the scores domain can
become a key aspect of the speaker recognition problem before final decision of the court.
Because reliability explicitly models the effect of acoustic conditions on the score
distributions, the common problem of operating conditions mismatch can be alleviated.
On the other hand, the performance and reliability of an automatic speaker recognition

method should be evaluated and presented to the court by the forensic expert. This can be
done by repeating the experiment of likelihood ratio calculation, with several speakers
being at the origin of the questioned recording, and by representing the results using two
probability distributions of likelihood ratios when the two competing hypotheses are true
[30]. In this case, the method based on reliability measures, presented in this paper, can be
used after the replacement of scores by likelihood ratios given a threshold of likelihood
ratio equal to one.

5. Experiments and results

5.1. Assessment criteria

The first measure of performance that we use for assessing confidence and reliability
measures is the accuracy of prediction of decision correctness. As mentioned in Section 3.2,
the number of samples per class3(clients, TID ¼ 1, and impostors, TID ¼ 0) is imbalanced
(around 1:250 in our case), hence we cannot take the classical definition of accuracy as
nCorrectClassifications=nSamples, or the performance of the confidence and reliability
measures for client accesses would have very little influence on the overall results.
Furthermore, since the baseline classifier will have an error rate of less than 50%
(otherwise it should not be used), there will always be less cases where DR ¼ 0 than cases
where DR ¼ 1. Thus, a blind confidence measure could predict DR ¼ 0 all the time and be
mostly correct if this imbalance is not accounted for. Since we have a ‘‘double imbalance’’
situation, we do not make use of the geometric mean which can be useful in ‘‘single
imbalance’’ situations [23,31], but rather we define balanced accuracy as

accbal ¼
1

4

X
dr¼f0;1g

X
tid¼f0;1g

NcorrDR¼dr;TID¼tid

NDR¼dr;TID¼tid

, (12)

where NcorrDR¼dr;TID¼tid is the number of correctly classified samples out of a total of
NDR¼dr;TID¼tid samples with ground truth labels DR ¼ dr and TID ¼ tid. This measure
expresses the overall performance of the reliability or confidence measure. A measure that
performs well for, say, impostors, but not for clients will thus be penalised by this
evaluation criterion.
The performance of confidence measures over a set of test data can also be evaluated by

producing a detection error tradeoff (DET) curve based on two distributions of confidence
or reliability measures: one for the measures over correct decisions (DR ¼ 1), and one for
3In the following discussions, class will mean impostor (TID ¼ 0) or client (TID ¼ 1) access when talking about

the speaker verification classifier. When talking about the reliability or confidence measure, which can be

considered as a second-level classifier, class will be taken to mean correct (DR ¼ 1) or incorrect (DR ¼ 0) decision.
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the measures over wrong decisions (DR ¼ 0). The less overlap between the distributions
there is, the better the confidence or reliability measure will be. DET curves are a
meaningful tool to compare confidence and reliability measures only if these are trained
with the same assumptions about the imbalance of the training set. In the present case,
CM logistic (with uniform priors on TID), CMmargin (with equal cost for FA and FR in
building the FAR, FRR curves) and reliability (with uniform priors on TID and DR) can
be compared, because the structure of the testing set in terms of TID–DR class balance
will have little impact on the results of the test. CMBayes however is based on direct
modelling of the correct and erroneous decisions score distributions (CA, CR, FA, and
FR, see Fig. 1(b)) and thus will be favoured by a test set structure matching the training set
structure (small data counts for CA, FR with respect to CR, FA). Therefore, direct
comparison makes little sense.

Another objective measure of goodness for reliability or confidence measures is
normalised cross-entropy (normalised mutual information). It can be defined as the
‘‘relative decrease in uncertainty about the classifier’s decision provided by the confidence
measure’’, while the original definition from NIST for speech recognition confidence
measures [32] is ‘‘the mutual information (cross entropy) between the correctness of the
system’s output word and the confidence score output for it, normalized by maximum
cross entropy’’. However, this measure is also biased in favour of confidence or reliability
estimates that perform better on the majority class (DR ¼ 1). Thus, while it is very useful
in speech recognition applications, we do not use it for evaluation in the current biometric
identity verification setting given the imbalance of classes.

5.2. Speaker verification system

The speaker verification system, based on the Alize Toolkit [33], uses energy-based VAD
to remove pause portions of the utterance, after which 12 MFCCs with first- and second-
order time derivatives are extracted using the HTK toolkit’s HCopy, and cepstral mean
normalisation is applied to try and compensate for stationary convolutional noise. All
training files for the users in the database are pooled to train a world GMM with 200
Gaussian components with diagonal covariance matrices. Each user’s model is then MAP-
adapted from the world model by using all of the corresponding training files.

A global verification threshold is obtained by using all utterances from the evaluation set
to obtain verification scores, and setting the verification threshold at the EER (equal error
rate) point between client and impostor score distributions.

5.3. Database and results

The database used for experiments is a 251-users subset of TIMIT, divided in 179 males
and 72 females. Approximately, 20 s of data in six presentations (phonetically rich read
sentences) for each user is used to train the user models. The remaining four client
presentations per user are held out and divided into evaluation (two presentations) and
testing (two presentations) sets. In verification, no separation is made between male and
female pool.

We also use a noisy version of the same TIMIT subset: babble-type noise corresponding
to a possible deployment environment with SNRs following a random uniform
distribution from 5 to 55 dB is added to the clean data.
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5.3.1. Decision correctness prediction

The aim of this series of experiments is to empirically verify how well the confidence and
reliability measures perform on a held-out testing set. We treat confidence and reliability
estimation as a two-class pattern recognition task, where the goal is to infer the state of the
DR variable. The measures are trained on evaluation data, which can be either noisy (thus
matching the noisy test environment better) or clean.
All these measures are trained with equal priors whenever possible to make the balanced

accuracy comparison meaningful. For instance, CM logistic is trained with uniform priors on
TID, CMBayes with equal priors for pcc and pwc, CMmargin with equal cost for FA and FR
when computing the FAR and FRR curves, and reliability with equal priors on TID and DR.
All measures tested perform better than chance (25% on a four-class problem). Thus,

their use should prove beneficial on a testing set that is evenly balanced between CA, CR,
FA, and FR cases, because erroneous and correct decisions from the speaker verification
system will be identified correctly. Secondly, it should be noted that measures that do not
make Gaussian assumptions about the impostor/client score distributions (CMmargin and
reliability) perform overall better than the others. The slightly better result obtained by
reliability can be explained by the fact that signal quality is taken into account (reliability is
the only multiple-domain measure tested in this paper). The results of CMBayes could
probably be made better with respect to the balanced accuracy criterion by substituting
mixture models for Pcc and Pwc, where the weight given to client and impostor
presentations would be equal.
From the results in Table 2, it can be seen that the three confidence measures tested

perform better or only slightly worse when trained on noisy data. This is in accordance
with classical results for simple robustness methods in speech recognition.
To appreciate the behaviour of the confidence and reliability measures over a range of

thresholds for the DR ¼ f0; 1g decision, the performance of the confidence and reliability
measures trained on the noisy evaluation set and tested over the noisy testing set is shown
in Fig. 6. This figure also displays the results for reliability when the priors on PðTIDÞ and
PðDRÞ are not fixed to be uniform but learned from training data. As can be expected,
since the testing data matches the training data in terms of respective class counts, the
result is better than for the reliability measure trained with uniform priors.
Table 2

Decision correctness prediction for reliability and confidence measures. accCA is the accuracy on correct accept

cases (TID ¼ 1;DR ¼ 1), accCR is the accuracy on correct reject cases (TID ¼ 0;DR ¼ 1), accFA is the accuracy

on false accept cases (TID ¼ 0;DR ¼ 0), accFR is the accuracy on false reject cases (TID ¼ 1;DR ¼ 0), and accbal
is the balanced accuracy computed as per Eq. (12)

Method accCA (%) accCR (%) accFA (%) accFR (%) accbal (%)

CM logistic (clean) 100 99.7 4.4 0.0 51.0

CM logistic (noisy) 100 96.7 30.0 0.0 56.7

CMBayes (clean) 8.3 96.1 33.3 100 59.4

CMBayes (noisy) 5.8 95.4 35.6 100 59.2

CMmargin (clean) 43.9 49.4 91.1 98.8 70.8

CMmargin (noisy) 66.8 49.1 91.1 92.9 75.0

Reliability (noisy) 66.5 72.7 76.7 93.3 77.3

All accuracies are given in percent.
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Fig. 6. DET curves for confidence measures and reliability measure, trained on noisy evaluation data and tested

on noisy test data. reliabilitypriors is trained with PðTIDÞ and PðDRÞ learned from data, and thus results are better

than for the reliability with non-informative priors since the testing set structure closely matches the training set

structure.
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This flexibility in setting the priors is an advantage of the reliability approach with BNs:
the priors PðTIDÞ and PðDRÞ can be instantly modified to suit the deployment conditions
and scenario without having to retrain the rest of the network (conditional mixture of
Gaussians for Sc and QM).

The relatively good performance for the CMBayes measure shown in Fig. 6 can again be
attributed to the design of the test set, whose proportion of client and impostors
(corresponding to correct accept and correct rejects, FAs and FRs) matches exactly that
which is found in training. Given the small amount of correct accepts with respect to the
number of correct rejects, and likewise the small amount of false rejects with respect to
FAs, the PccðScÞ and PwcðScÞ densities estimated and used for Eq. (4) (the CMBayes

confidence measure) are strongly biased towards the majority class (impostors). Therefore,
the matching testing set used favours this measure. It can be seen from the results in
Table 2 that if the testing imbalance is removed by the evaluation criterion, the actual error
rate is higher.

5.3.2. Improving speaker verification performance

To assess the potential of the reliability measure in improving speaker verification
performance, we compare the performance of two repair strategies for the same speaker
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verification system. The first repair strategy implements the simple repair sequence
described in Fig. 5: the system is allowed to request another presentation if it estimates that
the decision is unreliable (i.e. PðDR ¼ 1jCID;QM;ScÞoThreshold) for the first presenta-
tion. If the second presentation also has low reliability, the system picks the presentation
with highest reliability to produce the final score and accept/reject decision. In this case the
behaviour is similar to a max rule on DR for intra-modality fusion. The results for this
strategy, where the threshold has been set so that about one out of two test cases are re-
acquired, are shown in Fig. 7 under the label ‘‘conditional most reliable of two’’. We can
see that, at EER, this achieves the same error rate as a baseline method which randomly re-
acquires presentation for 50% of the test samples and then takes the mean of the two
presentations (labelled ‘‘random re-acquisition + mean of two’’), but by using only one
presentation. This indicates that, by better choosing the data used for verification, we can
reach the same reduction in error rate as would be achieved by using double the amount of
data with intra-modal fusion. The advantage of the reliability approach can be pushed
further by not throwing away the unreliable presentation completely, a sensible approach
since it would have already been re-acquired at this stage.
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Fig. 7. DET curves for the speaker verification system. The baseline curve is for the system that always accepts the

first presentation. Conditional reliability weighting is for a reliability-based weighting (see Eq. (9)) that is applied

only if the first presentation has low reliability. Mean of two is for a system that always requests two presentations

and computes score as the mean of these two presentations.
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Thus, the second repair method is based on Eq. (9): if the first presentation is
deemed too unreliable, a second one is requested but this time the two scores are
fused using a weighted sum where the weighting coefficients are the scaled reliabilities of
each presentation. The results for this method are shown in Fig. 7 under the label
‘‘conditional reliability weighting’’. In this case it can be seen that the results are very close
to what is reached by a baseline method (labelled ‘‘unconditional mean of two’’) that
always requests two presentations. By using this method, the EER is lowered from 10%
for the baseline to 6% for the reliability-based repair sequence, a relative reduction of
about 40%.

Another possibility would be to perform inference on the TID node (see Fig. 3(b)) and
compute the posterior PðTIDjSc;CID;QMÞ. This posterior could then be used directly in
intra-modal fusion, using for example fixed rules.

Depending on usability factors or security concerns, the reliability threshold can be
lowered (so that the system re-acquires more often) or raised to achieve a balance in terms
of performance, complexity, and time needed for verification.
6. Conclusions

We have presented confidence measures for speaker verification, and expanded the
family of multiple-domain confidence measures by adding a probabilistic measure of
decision reliability in speaker verification which has a probabilistic interpretation, takes
into account signal-domain auxiliary information, and information about the speaker
verification classifier behaviour. Bayesian networks are used to model the dependencies
between these sources of information in order to infer the a posteriori distribution over the
possible reliability measure values. We showed that the setting of priors is a very important
aspect of design in speaker verification, and that Bayesian networks offer a flexible
framework to do so.

We compared the performance of confidence and reliability measures on a subset of the
TIMIT database comprising 251 users, to which babble-type noise was added in random
proportions from 5 to 55 dB. We introduced evaluation criteria and exposed a concern that
is particular to the confidence/reliability estimation in biometric identity verification cases:
the ‘‘double imbalance’’ of clients versus impostor attempts, and of correct versus incorrect
decisions.

The reliability measure was then applied to a speaker verification task to manage a
repair sequence with two approaches, one that discards the unreliable presentation and the
other which performs intra-modal fusion using reliability as fusion weights. It was shown
that error rates can be attained which are close to a system that always requests two
presentations, while only re-acquiring data for about 50% of the users.

Future work will be on applying the reliability approach to non-biometric synthetic data
and further exploring the multimodal biometric verification case.
Acknowledgements

The authors are grateful to Prof. Athina Petropulu for the invitation to write this article.
The authors also acknowledge the insightful remarks of the anonymous reviewer.



ARTICLE IN PRESS
J. Richiardi et al. / Journal of the Franklin Institute 343 (2006) 574–595594
References

[1] J.P. Openshaw, J.S. Mason, On the limitations of cepstral features in noise, in: Proceedings of

the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), April 1994,

pp. 49–52.

[2] F. de Wet, J. de Veth, L. Boves, B. Cranen, Additive background noise as a source of non-linear mismatch in

the cepstral and log-energy domain, Comput. Speech Lang. 19 (1) (2005) 31–54.

[3] Y. Pan, A. Waibel, The effects of room acoustics on MFCC speech parameter, in: Proceedings of the

International Conference on Spoken Language Processing (ICSLP), 2000.

[4] J. Pitrelli, M. Perrone, Confidence modeling for verification post-processing for handwriting recognition, in:

Proceedings of the Eighth International Workshop on Frontiers in Handwriting Recognition (IWFHR),

Niagara-on-the-Lake, Canada, August 2002, pp. 30–35.

[5] J. Luo, M. Boutell, Automatic image orientation detection via confidence-based integration of low-level and

semantic cues, IEEE Trans. Pattern Anal. Mach. Intell. 27 (5) (2005) 715–726.

[6] Y. Huang, Y. Li, Prediction of protein subcellular locations using fuzzy k-NN method, Bioinformatics 20 (1)

(2004) 21–28.

[7] D. Lo, R.A. Goubran, R.M. Dansereau, G. Thompson, D. Schulz, Robust joint audio–video localization

in video conferencing using reliability information, IEEE Trans. Instrum. Meas. 53 (4) (2004) 1132–1139.

[8] H. Jiang, Confidence measures for speech recognition: a survey, Speech Commun. 45 (4) (2005) 455–470.

[9] J. Koolwaaij, L. Boves, On decision making in forensic casework, Int. J. Speech Lang. Law: Forensic

Linguist. 6 (2) (1999) 164–242.

[10] W.M. Campbell, D.A. Reynolds, J.P. Campbell, K.J. Brady, Estimating and evaluating confidence for

forensic speaker recognition, in: Proceedings of the IEEE International Conference on Acoustics, Speech,

and Signal Processing (ICASSP), vol. 1, 2005, pp. 717–720.

[11] E. Mengusoglu, Confidence measure based model adaptation for speaker verification, in: Proceedings of the

Second IASTED International Conference on Communications, Internet, and Information Technology,

Scottsdale, USA, November 2003, pp. 286–290.

[12] N. Poh, S. Bengio, Improving fusion with margin-derived confidence in biometric authentication tasks, in:

Fifth International Conference Audio- and Video-Based Biometric Person Authentication (AVBPA), 2005.

[13] H. Gish, M. Schmidt, Text-independent speaker identification, IEEE Signal Process. Mag. 11 (4) (1994)

18–32.

[14] H. Nakasone, S.D. Beck, Forensic automatic speaker recognition, in: Proc. ISCA workshop. on speaker

recognition—2001: a Speaker Odissey, 2001.

[15] S. Bengio, C. Marcel, S. Marcel, J. Mariethoz, Confidence measures for multimodal identity verification, Inf.

Fusion 3 (4) (2002) 267–276.

[16] E. Erzin, Y. Yemez, A.M. Tekalp, Multimodal speaker identification using an adaptive classifier cascade

based on modality reliability, IEEE Trans. Multimedia 7 (5) (2005) 840–852.

[17] Q. Li, B.-H. Juang, C.-H. Lee, Automatic verbal information verification for user authentication, IEEE

Trans. Speech and Audio Process. 8 (5) (2000) 585–596.

[18] M.C. Huggins, J.J. Grieco, Confidence metrics for speaker identification, in: Proceedings of the Seventh

International Conference on Spoken Language Processing (ICSLP), 2002.

[19] J. Richiardi, P. Prodanov, A. Drygajlo, A probabilistic measure of modality reliability in speaker verification,

in: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing 2005,

Philadelphia, USA, March 2005, pp. 709–712.

[20] J. Richiardi, P. Prodanov, A. Drygajlo, Speaker verification with confidence and reliability measures, in:

Proceedings of the 2006 IEEE International Conference on Speech, Acoustics and Signal Processing,

Toulouse, France, May 2006.

[21] K. Murphy, Dynamic Bayesian networks: representation, inference and learning. Ph.D. Thesis, University of

California, Berkeley, July 2002.

[22] K. Toyama, E. Horvitz, Bayesian modality fusion: probabilistic integration of multiple vision algorithms for

head tracking, in: Proceedings of the Fourth Asian Conference on Computer Vision (ACCV), Taipei,

Taiwan, January 2000.

[23] R. Barandela, R.M. Valdovinos, J.S. Sánchez, F.J. Ferri, The imbalanced training sample problem: under or

over sampling?, in: Proceedings of the SSPR & SPR 2004, Lecture Notes in Computer Science, vol. 3138,

Springer, Berlin, January 2004, pp. 806–814.



ARTICLE IN PRESS
J. Richiardi et al. / Journal of the Franklin Institute 343 (2006) 574–595 595
[24] D. Reynolds, A Gaussian mixture modeling approach to text-independent speaker identification, Ph.D.

Thesis, Georgia Institute of Technology, Atlanta, USA, 1992.

[25] E.K. Patterson, S. Gurbuz, Z. Tufekci, J.N. Gowdy, Moving-talker, speaker-independent feature study, and

baseline results using the CUAVE multimodal speech corpus, EURASIP J. Appl. Signal Process. 2002 (11)

(2002) 1189–1201.

[26] D.K. Freeman, G. Cosier, C.B. Southcott, I. Boyd, The voice activity detector for the pan-European digital

cellular mobile telephone service, in: Proceedings of the IEEE International Conference on Acoustics,

Speech, and Signal Processing (ICASSP), vol. 1, 1989, pp. 369–372.

[27] P. Renevey, A. Drygajlo, Entropy based voice activity detection in very noisy conditions, in: Proceedings of

the Seventh European Conference on Speech Communication and Technology (EUROSPEECH), 2001.

[28] Z. Chen, X. Ding, Rejection algorithm for mis-segmented characters in multilingual document recognition,

in: Proceedings of the International Conference on Document Analysis and Recognition (ICDAR), 2003.

[29] A. Drygajlo, D. Meuwly, A. Alexander, Statistical methods and Bayesian interpretation of evidence in

forensic automatic speaker recognition, in: Proceedings of the Eighth European Conference on Speech

Communication and Technology (EUROSPEECH), Geneva, Switzerland, September 2003, pp. 689–692.

[30] J. Gonzalez-Rodriguez, A. Drygajlo, D. Ramos-Castro, M. Garcia-Gomar, J. Ortega-Garcia, Robust

estimation, interpretation and assessment of likelihood ratios in forensic speaker recognition, Comput.

Speech Lang. 20 (2–3) (2006) 331–355.

[31] M. Kubat, S. Matwin, Addressing the curse of imbalanced training sets: one-sided selection, in: Proceedings

of the International Conference on Machine Learning (ICML), 1997, pp. 179–186.

[32] National Institute of Standards and Technology. The 2001 NIST evaluation plan for recognition of

conversational speech over the telephone, October 2000.

[33] J.-F. Bonastre, F. Wils, S. Meignier, ALIZE, a free toolkit for speaker recognition, in: Proceedings IEEE

International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2005), Philadelphia, USA,

March 2005, pp. 737–740.


	Confidence and reliability measures �in speaker verification
	Introduction
	Confidence measures in speaker verification
	Confidence measures with classifier-domain data
	Confidence measures with data from multiple domains

	Classifier decision reliability in speaker verification
	Bayesian networks for reliability estimation
	Training procedure for Bayesian network reliability estimator
	Taking acoustic conditions into account

	Using reliability and confidence measures in speaker verification
	Classification with the reject option
	Interpretation of strength of evidence in forensic applications

	Experiments and results
	Assessment criteria
	Speaker verification system
	Database and results
	Decision correctness prediction
	Improving speaker verification performance


	Conclusions
	Acknowledgements
	References


