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Abstract. We present three new voting schemes for multi-classifier
biometric authentication using a reliability model to influence the im-
portance of each base classifier’s vote. The reliability model is a meta-
classifier computing the probability of a correct decision for the base
classifiers. It uses two features which do not depend directly on the under-
lying physical signal properties, verification score and difference between
user-specific and user-independent decision threshold. It is shown on two
signature databases and two speaker databases that this reliability classi-
fication can systematically reduce the number of errors compared to the
base classifier. Fusion experiments on the signature databases show that
all three voting methods (rigged majority voting, weighted rigged ma-
jority voting, and selective rigged majority voting) perform significantly
better than majority voting, and that given sufficient training data, they
also perform significantly better than the best classifier in the ensemble.

1 Introduction

A voting combiner operating on the output of classifier ensembles with differing
accuracies can be made more effective by supplying it with additional data to
influence the importance of each base classifier’s vote. A typical scheme is to
weight the vote of each classifier proportionally to its accuracy, by training the
weights on a development dataset. This paper is concerned with the use of other
sources of information for improving voting schemes in biometric authentication.

It has previously been shown that using modality-specific, signal-level qual-
ity information can improve classifier combination [1,2]. These quality measures
must be tailored to each signal to be used (for instance, image sharpness can-
not be used with speech-based biometrics). In this paper, we show that other,
modality-independent quality measures can be used in order to estimate the re-
liability of a classifier’s decision, that is, the probability that the base classifier
has taken a correct decision.

The estimate of reliability can be used for rejecting the sample (thus decreas-
ing a base classifier’s error rate via the reject-error tradeoff), providing a value
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to a human layperson (useful in situations such as border control for biomet-
ric passports), or improving classifier combination (confidence information has
been used to perform classifier selection [3,4,5,6] and classifier fusion [7,8]). In
this paper, we propose different ways of using the reliability information in order
to improve voting for classifier combination.

First, we introduce modality-independent quality measures in Section 2. We
then discuss the process and limits of reliability modelling using the quality
measures as features in Section 3. Section 4 proposes three voting schemes using
the reliability information, and section 5 shows experimental results of reliability
classification on signature and speech, and reliability-based voting for combining
multiple signature classifiers. We close the paper by discussing theoretical points
and further work in Section 6.

2 Modality-Independent Quality Measures

In order to predict the errors of the base classifiers in the ensemble, it is neces-
sary to find quantities which are indicative of potential mistakes. We call these
features quality measures. For example, in speaker recognition, a quality mea-
sure that is interesting to use is the signal-to-noise ratio (SNR), as a lower SNR
tends to increase the probability of error1 . The two quality measure we use,
score and difference between user-specific and user-independent decision thresh-
old, constitute features for the reliability classifier.

Most base classifiers can provide a continuous-valued output (measurement-
level) indicating how close or far a particular sample is to a particular class, a
quantity generally called score in biometrics. This can be a likelihood or poste-
rior probability value for a probabilistic classifier, an Euclidean distance for a
nearest-neighbour classifier, etc. Since the probability of classification error in-
creases as the distance gets closer to the decision boundary between classes, this
“soft” classifier output, and its distribution, constitute valuable data for error
prediction, and are applicable to any biometric modality whose classifier is ca-
pable of producing measurement-level output. Estimation of classifier reliability
based only on this soft classifier output is generally called confidence estimation.

In our experience on speech and signature, however, the boundary defined
by the measurement-level output distribution between correct decisions and in-
correct decisions of the base classifier is complex, and it is difficult (but not
impossible) to train a meta-classifier that performs with fewer errors than the
base classifier whose behaviour it models2. This is illustrated by the projections
on the horizontal axis shown in Figure 1.

Thus, we introduce a second modality-independent quality measure, that is
well correlated with errors and the score: the difference between the user-specific
1 However, it is generally not the case that the relationship between quality mea-

sures and base classifier errors can be modelled effectively by linear or low-order
polynomial regression.

2 This is the likely reason for the lack of improvement in fusion mentioned in [8] when
using a score-based confidence model.
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threshold and the user-independent threshold. In a verification system using
user-independent thresholds3, some users will be more systematically subjected
to false rejects, respectively false accepts, than others. As can be seen in Figure 1,
this feature makes the reliability classification task easier for both the speech and
signature modality.
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(a) Quality measures computed from the output of a signature base clas-
sifier using local features.
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(b) Quality measures computed from the output of a speaker verification
base classifier using Mel-frequency cepstral coefficients (MFCC) features.

Fig. 1. Score and threshold difference quality measures for signature verification
(MCYT100) and speaker verification (BANCA, G2). Dots indicate reliable (correct)
decisions, crosses indicate unreliable (erroneous) decisions of the base classifier. Each
quality measure is also projected onto its axis.

3 For instance because it has recently been deployed and there is not enough data for
each user to reliably set a personalised threshold.
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3 Reliability Estimation

Once the two features (score and threshold difference) are extracted, we can use
nearly any classication algorithm to estimate the reliability of base decisions,
with some limitations we discuss in section 3.1. In our case, we use an ensemble
of decision trees, either a C4.5 pruned decision tree [9] with bagging or a random
forest classifier [10]. In previous work, we have used Bayesian networks to perform
reliability estimation [11]. The training data (development set) is separate from
the base classifier’s training data and the test data, and is generated by running
the base classifiers on the development samples.

3.1 Limits of Reliability Modelling

Since we use measurement-level output of the base classifier as one of the features
for modelling reliability of decisions, the reliability model is dependent on the
accuracy of the base classifier. By definition a well-performing base classifiers
has a lower density of soft outputs (which correspond to reliable or unreliable
decisions) near the decision boundary than a base classifier with a higher error
rate.

However, we can guarantee that the reliability classifier will perform better
than the base classifier under certain conditions, which we will phrase in terms
of confusion matrices (contingency tables). Let us define B as the confusion
matrix of the base classifier, and R as the confusion matrix of the reliability
classifier. The classes in B, used by the base classifier, are 0—impostor and 1—
client, while the classes in R, used by the reliability model, are 0—unreliable and
1—reliable.

B =
(

a b
c d

)
,R =

(
e f
g h

)
(1)

The two confusion matrices are linked by the fact that the reliability model
has as class 0 (unreliable) the errors of the base classifier (off-diagonal elements in
B), and conversely as class 1 (reliable) the correct decisions of the base classifier
(diagonal elements in B):

b + c = e + f, a + d = g + h (2)

The condition for the reliability model to be able to improve on the output
of the base classifier is that the reliability model must make less errors than the
base classifier, meaning that the sum of the number of base errors considered
reliable and the number of base correct decisions considered unreliable must be
less than the sum of the base errors. Equivalently, the accuracy of the reliability
model must be higher than that of the base classifier. This formulation can
be written as in Equation (3) and simplified by using Equations (2) to obtain
Equation (5).
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e + h

(e + f) + (g + h)
>

a + d

(a + d) + (b + c)
(3)

e + h

(e + f) + (g + h)
>

g + h

(g + h) + (e + f)
(4)

e > g (5)

Any reliability model whose confusion matrix satisfies the condition expressed
in Equation (5) is guaranteed to have less errors than the base classifier it models,
and to be useful in reducing base classifier error rates, even if the base classifier
performs below chance. If, in addition to reducing base errors, we want the
reliability model to perform above chance, we can add the condition

e + h > f + g (6)

4 Using Reliability in Voting Combiners

While majority voting is an appealing combining scheme, its optimality depends
on several assumptions4, of which we will mention chiefly the fact that it assumes
comparable expertise of the ensemble base classifiers. In biometric applications it
is often not the case, especially when combining several modalities, with some-
times one or more orders of magnitude of difference between the error rates
of the base classifiers. Therefore, we propose three schemes that use classifier-
specific reliability models as an input to a controller driving the voting process
to improve on majority voting.

4.1 Rigged Majority Voting

The first scheme we propose, rigged majority voting (RMV), uses the base clas-
sifier’s reliability model to estimate, on an instance-by-instance basis, when its
decision is likely to be unreliable. In such cases, the voting controller will rig
the vote by inverting it (the role of prior probabilities in the inversion process is
discussed in [12]). Denoting the base classifier decision by a binary variable CID
(0 for impostors, 1 for clients), the reliability classification by a binary variable
DR (0 for unreliable, 1 for reliable), and the rigged decision by RD, the voting
controller implements the negative exclusive-or function: RD = CID ⊕ DR This
method works instance-by-instance, by estimating for each case the reliability of
the decision.

If the reliability models satisfy Eq. (5), and assuming the correlation between
the rigged votes is the same as the correlation between the votes of the base clas-
sifiers, this scheme guarantees a better lower and upper bounds on the achievable
fused accuracy than simple majority voting on the base classifiers, because the
rigged decisions will have higher individual accuracies. This result can be proved
using the method in [13].
4 Such as independence of ensemble members.
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However, in the case of base classifiers with very different error rates (say, an
order of magnitude), this scheme does not guarantee that we can outperform the
best base classifier. We therefore introduce a variation on the voting controller
by weighting the contributions of individual classifiers.

4.2 Weighted Rigged Majority Voting

The second scheme we introduce, weighted rigged majority voting (WRMV) is
also based on rigged votes, which is an instance-specific method, but the rigged
votes are subsequently weighted by a factor proportional to the accuracy of
that classifier’s reliability model. Thus, we also take into account the overall
performance of the base classifier on a development set.

Even though the classifiers violate the independence assumption, and the
weights may therefore be suboptimal [14, p.124], we set the classifier-specific
weights wn to

N∑
n=1

wn = 1, wn ∝ accn

1 − accn
, (7)

where the accuracy of each reliability model accn is computed according to the
confusion matrix R in Eq. (1).

The difference with standard practice for weighted majority voting is that
the accuracy used in weighting is not that of the base classifier, but is replaced
by the accuracy of the reliability model, which is higher. Thus, the weights
are dependent on the effectiveness of the reliability model. However, since the
accuracies of the reliability models may follow the same ordering as the accuracies
of the base models, the results may not always differ significantly.

The majority threshold is changed from τ ≥ �N/2�+1 for unweighted majority
voting to τ >

∑
Nworst

wn. Thus, the vote of the worst N classifiers Nworst in
the ensemble is insufficient to win the vote, and if reliabilities are unbalanced
the opinion of the most reliable classifiers will count much more. Nworst can be
chosen as �N/2� + 1.

4.3 Selective Rigged Majority Voting

The selective rigged majority voting scheme (SRMV) operates on the same prin-
ciple as the confidence gating method used in [3], the reliability-based decision
table in [1], and the arbitration scheme of [4]: the classifier with the highest
confidence gets to label the sample. The difference in our case is that we are
operating on decisions that have been rigged by the voting controller before the
selection.

Under some conditions (e.g. three classifiers, one of which clearly dominates
for most patterns), selective voting can give results very close to weighted rigged
majority voting. This is because the weights assigned to the members of the
ensemble are proportional to the error rate of their associated reliability classifier.
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5 Experiments

In these experiments, we first test the accuracy of the reliability model of each
classifier for predicting errors (Section 5.2). Then, in Section 5.3 we apply relia-
bility models to voting on a signature verification task.

5.1 Databases and Base Classifiers

For the signature modality, we use the 100-users MCYT-100 database [15] and
the 40-users training set of the SVC2004 database [16]. For the speech modality
we use the 52-users, English part of the BANCA database [17] and the 295-users
XM2VTS database [18].

The base classifiers for signature are a Gaussian mixture model (GMM) using
15 local features [19] (abbreviated LGMM), a GMM using 12 global features
(abbreviated GGMM), and a multi-layer perceptron (MLP) using the same 12
global features (abbreviated GMLP). Both the GMMs and the MLP are learned
from 5 signatures, and the MLP is learned using discriminative training.

The base classifier for speaker verification is a GMM based on the Alize
toolkit [20] (abbreviated AGMM), trained following each speech database’s spe-
cific protocol (P for BANCA, configuration I for XM2VTS).

5.2 Reliability Prediction with Modality-Independent Quality
Measures

The experiments are performed using 10-fold cross-validation and data from all
users. Essentially, we want to verify whether we can learn a reliability model
that will make less mistakes than the underlying base classifiers. If it is the case,
then the reliability model can be used to enhance the performance of the base
classifier.

Several types of classifiers were tested for reliability modelling, and the two
most promising ones were: bagging of C4.5 trees (abbreviated BC45), and ran-
dom forest classifiers (abbreviated RF). For space reasons we will report here
only the best performing of the two. The results are reported in Table 1.

5.3 Voting Schemes with Reliability

We compare two baseline combiners, majority voting (abbreviated MV) and
weighted majority voting (WMV), to three reliability-based voting combiners:
rigged majority voting (RMV), weighted rigged majority voting (WRMV), and
selective rigged majority voting (SRMV). The base classifiers are those presented
above, with the decision thresholds computed a posteriori.

Table 2 presents the results of the tests on the SVC 2004 signature database.
In addition, we performed the McNemar hypothesis test to assess whether the
combiners presented are significantly different (p = 0.05). Despite the encour-
aging results, the small size of the dataset (40 users, 1400 cases available for
fusion tests) means that the only significant difference (in the majority of the
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Table 1. 10-fold cross-validation results of reliability prediction. DB indicates the
database: S for SVC2004, M for MCYT100, B(G1/2) for BANCA G1 or G2, X(E/T)
for XM2VTS Eval or Test set. Classifier refers to the type of base classifier used. Rel
Classifier refers to the type of the reliability classifier used. Err is the error rate (in
percent) of the base classifier. Errr is the error rate (in percent) of the associated
reliability model. Decrease shows the relative reduction in error rate that can be ob-
tained by using the reliability model along with the base classifier. For BANCA G1,
an AdaBoosted ensemble of C4.5 trees brings about a 21.4% relative improvement in
the error rate.

DB Classifier Rel Classifier Err [%] Errr [%] Decrease [%]
S LGMM RF 8.5 4.0 53.0
S GGMM BC45 22.0 16.6 24.0
S GMLP BC45 23.8 19.8 17.0
M LGMM BC45 3.3 1.8 46.7
M GGMM BC45 19.0 12.4 34.7
M GMLP BC45 22.6 16.8 26.0

X(E) AGMM BC45 1.0 0.8 23.5
X(T) AGMM BC45 0.3 0.2 33.0
B(G1) AGMM RF=BC45 7.7 7.7 0
B(G2) AGMM RF 8.4 4.8 44.0

Table 2. 10-fold cross-validation results of reliability-based decision fusion on the
SVC2004 signature database (denoted ’S’) and the MCYT100 signature database (de-
noted ’M’). Baseline best is the best classifier in the ensemble. The standard deviation
over the 10 folds is given along with the error rates. FAR is the false accept rate (im-
postor accepted as a client), FRR the false reject rate (client rejected as an impostor),
and HTER is the half total error-rate, HTER = F AR+F RR

2 .

DB Scheme FAR [%] FRR [%] HTER [%]
S Baseline best 8.6 ± 3.6 8.5 ± 3.0 8.6 ± 2.1
S MV 10.3 ± 3.0 12.9 ± 3.9 11.6 ± 2.2
S WMV 6.1 ± 3.9 15.9 ± 4.6 11.1 ± 2.0
S RMV 4.9 ± 2.2 11.2 ± 4.9 8.0 ± 2.2
S WRMV 2.2 ± 3.0 9.2 ± 5.2 5.7 ± 2.5
S SRMV 3.3 ± 2.5 6.1 ± 3.4 4.7 ± 1.6
M Baseline best 3.4 ± 1.1 3.3 ± 0.9 3.3 ± 0.8
M MV 7.8 ± 1.2 9.0 ± 2.8 8.4 ± 1.2
M WMV 3.4 ± 1.1 3.3 ± 0.9 3.3 ± 0.8
M RMV 3.7 ± 1.0 5.0 ± 1.6 4.3 ± 0.8
M WRMV 1.3 ± 0.8 2.3 ± 0.9 1.8 ± 0.5
M SRMV 1.5 ± 0.8 2.4 ± 0.1 2.0 ± 0.4

cross-validation runs) is between the MV and SRMV combining schemes. Addi-
tionally, WMV and WRMV as well as WMV and SV are significantly different in
50% of the cross-validation folds. Note that using MV or WMV on this ensemble
would actually degrade the performance.
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Thus, we ran the same experiment on MCYT-100, a larger database com-
prising 4500 cases. The results are shown in Table 2. On this dataset, all three
reliability-based schemes significantly outperform MV and WMV, and WRMV
and SRMV both significantly outperform the best base classifier.This underlines
the importance of properly assigning weights in imbalanced ensembles. As can
be seen from the results for WMV, however, this is not always sufficient, and
a finer modelling of the underlying classifier’s behaviour can bring enhanced
performance.

6 Conclusion

We have presented a new model for classifier reliability, based on features that
can be applied independently of the underlying modality. We have used the
new reliability model in three new decision-level fusion methods that take into
account the overall reliability of individual classifiers on a development set, the
instance-by-instance reliability of each classifier’s decision, or both.

The rigged voting scheme improves over baseline methods by lowering the
bias of the base classifiers. However, the current approach makes no guarantee
about the remaining correlation between the rigged votes of the base classifiers,
an important factor in voting-based schemes. It is likely that the results would
be better with less correlation between base classifiers, as would be the case for
majority voting in multimodal verification.

Also, to more clearly show the difference between the WRMV and the SRMV
method, it would be interesting to perform experiments with more than 3 clas-
sifiers, and with more evenly matched classifiers.
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