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Abstract

Functional connectivity analysis of fMRI data can reveal synchronised activ-
ity between anatomically distinct brain regions. Here, we extract the charac-
teristic connectivity signatures of different brain states to perform classifica-
tion, allowing us to decode the different states based on the functional con-
nectivity patterns. Our approach is based on polythetic decision trees, which
combine powerful discriminative ability with interpretability of results. We
also propose to use ensemble of classifiers within specific frequency subbands,
and show that they bring systematic improvement in classification accuracy.
Exploiting multi-band classification of connectivity graphs is also proposed,
and we explain theoretical reasons why the technique could bring further
improvement in classification performance. The choice of decision trees as
classifier is shown to provide a practical way to identify a subset of con-
nections that distinguishes best between the conditions, permitting the ex-
traction of very compact representations for differences between brain states,
which we call discriminative graphs. Our experimental results based on strict
train/test separation at all stages of processing show that the method is ap-
plicable to inter-subject brain decoding with relatively low error rates for the
task considered.

Keywords: fMRI, brain decoding, functional connectivity, graphs, decision
tree

1. Introduction

Traditional fMRI analysis consists of univariate statistical hypothesis test-
ing to assess changes in the activity of each brain voxel induced by the
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stimulation paradigm (Frackowiak et al. (1997)). More recently, approaches
derived from supervised machine learning—commonly termed “brain decod-
ing” in the field of neuroimaging—have shown that it is possible to exploit
more subtle relationships in voxels’ intensity patterns (Haxby et al. (2001);
Haynes and Rees (2006); Norman et al. (2006)). These methods rely on a
classifier to predict the subject’s brain state from the BOLD responses in a
set of selected voxels, such as visual (Cox and Savoy (2003); Haynes and Rees
(2005); Kamitani and Tong (2005); Thirion et al. (2006); Kay et al. (2008);
Miyawaki et al. (2008)) or auditory cortices (Ethofer et al. (2009)). Results
from brain decoding are often remarkable since they clearly reach beyond
the possibilities of univariate techniques, but also because they are able to
uncover information from fine-grained cortical activity despite the relatively
low spatial resolution of fMRI. Furthermore, instead of a fixed spatial win-
dow, one can also apply classification to a so-called “searchlight” that slides
over the whole brain data, such that the classification success for each posi-
tion of the spotlight can then be mapped to show brain regions that carry
discriminative information between different conditions (Kriegeskorte et al.
(2006)). Another interesting approach is to use spatiotemporal observations
as an input to the classifier (Mitchell et al. (2004); Mourao-Miranda et al.
(2007)).

The study of functional connectivity is concerned with the temporal co-
herence between neurophysiological events observed in spatially remote brain
regions. In early work, correlation with a seed voxel was investigated and
revealed bilateral coactivation between sensory cortices (Biswal et al. (1995);
Lowe et al. (1998)). Further advances have been driven by unsupervised
methods such as source separation—mainly principal components (Friston
et al. (1993)) and independent components analysis (McKeown et al. (1998);
Calhoun et al. (2002); Beckmann and Smith (2004)) which allow to iden-
tify large-scale cortical networks—but also by other methods such as dy-
namic causal modelling, which tries to establish effective connectivity and
requires prior information about the neurological network to investigate (Fris-
ton et al. (2003)). A recent method related to our work proposed to use
resting-state correlations between regions of interest as features for an SVM
classifier (Craddock et al., 2009). Another attractive methodology to in-
vestigate functional networks is to rely on mathematical graph theory; i.e.,
constructing the (undirected) graph from temporal correlation matrices and
computing related measures; e.g., node degree, hubbiness, and so on (Sporns
et al. (2000); Salvador et al. (2005)). This methodology has brought new

2



insights in functional connectivity at resting state, such as the small-world
organisation of cortical networks at low temporal frequencies (Achard et al.
(2006)).

Here, we bring together brain decoding and graph representations based
on functional connectivity measures. These measures, such as temporal cor-
relation, are performed over a given period of time and reflect the timecourse
resemblances between different regions. Moreover, we estimate connectivity
at different temporal scales using the wavelet transform as a preprocessing
step. Then, we build a classifier trained on functional connectivity graphs
of a group a subjects to distinguish between different brain states of an un-
seen subject. The aim of our approach is to identify the connections that
are most discriminative between brain states, and to obtain relevant visual
representation of the data for neuroscience studies.

Previous brain decoding techniques primarily rely on linear support vector
machines (SVMs), which use a soft-margin hyperplane to separate classes. In
the present work, we propose polythetic decision trees that fit a hyperplane
using the most discriminative features (i.e., connections) at each level, such
that potentially complex and non-linear class boundaries can be obtained
by multilevel trees. Efficient and effective learning of this type of decision
trees relies on recent advances in pattern recognition (Friedman et al. (2000);
Gama (2004); Landwehr et al. (2005)), and provides embedded feature se-
lection which yields a compact discriminant function whose parameters are
amenable to interpretation. Their variance properties make them good can-
didates for ensembling, steering the classification strategy towards slightly
weaker but simpler (lower capacity) classifiers, which is a desirable behaviour
in high-dimensional learning, a classical situation in fMRI where the number
of dimensions is much higher than the number of training examples.

Our paper is organised as follows. In the Methods section, we describe our
data processing pipeline together with the details of the proposed methodol-
ogy. Next, we illustrate the feasibility of our approach by a proof of concept;
i.e., an fMRI experiment with block-based stimulation paradigm (watching
short movies) with long resting periods. We extract the set of connections
that is the most discriminative between rest and stimulation at different
temporal scales. The method is able to correctly classify the conditions in a
leave-one-subject-out cross-validation setting. Interestingly, we find that the
low-frequency correlations of the BOLD signal (below 0.11Hz) are the most
informative. The discriminative network also confirms a differential modu-
lation of sensory areas, in particular within the visual system, and midline
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brain areas during movie and rest conditions.

2. Methods

2.1. Preprocessing and data representation

The preprocessing steps are illustrated schematically in Fig. 1, and ex-
plained in detail below.

After realignment of the functional volumes using SPM51, we use the
IBASPM toolbox (Tzourio-Mazoyer et al. (2002); Alemán-Gómez et al.
(2006)) to build an individual brain atlas based on the structural MRI, con-
taining M = 90 anatomical regions. While this a relatively coarse atlas, it is
an essential step to allow for inter-subject variability and enable inter-subject
decoding with a good generalisation ability to unseen subjects - using group-
level normalisation and atlasing is not an option in this setting. Furthermore,
the structural atlas serves only as a basis for computing a much lower reso-
lution functional atlas. Using a more fine-grained atlas might result in some
regions disappearing completely in the functional atlas. Another benefit of
using the AAL atlas is that it offer a way of comparing results with several
other studies (Zalesky et al. (2010)).

We then obtain spatially-averaged timecourses from the voxels corre-
sponding to these regions in the functional space. For N repetitions (which
can be intra- or inter-subject, in our case N is the number of subjects) and
C conditions, we obtain the matrix

X : M × T ×N × C,

that contains M · N · C timecourses of length T . We denote the submatrix
Xn,c : M × T for the M timecourses of subject n and condition c.

The timecourses are then decomposed using the (redundant) discrete
wavelet transform (DWT) along the temporal dimension. This results into J
matricesX(i), i = 1, . . . , J that reflect the regional brain activities at different
temporal scales. We use cubic Battle-Lemarié wavelets (Battle, 1987).

2.2. Functional connectivity graphs

We use pairwise Pearson correlation coefficients to form the correlation
matrix R

(i)
n,c = E[X

(i)
n,cX

(i)
n,c

T ] : M × M , where the temporal detrending (up

1Available at http://www.fil.ion.ucl.ac.uk/spm/.
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Figure 1: Flowchart of the preprocessing procedure. DWT stands for Discrete Wavelet
Transform.

to third-degree polynomials) is provided by the vanishing moments of the
wavelet decomposition.

We now consider the brain regions as a set of vertices V and the correlation
coefficients as signed weights on the set of edges E, leading to an undirected
complete weighted graph G = (V,E). The graph adjacency matrix A

(i)
n,c can

be defined as A
(i)
n,c = R

(i)
n,c − I.

2.3. Graph matching

Comparing graphs is an active field of research in computer vision and
pattern recognition where numerous theoretical advances and practical al-
gorithms have emerged recently (Conte et al. (2004)). Full graph matching
algorithms (e.g., Umeyama (1988)) are commonly used to obtain distances
between graphs, which is a basic operation of pattern recognition. Such
algorithms operate by trying to find the best correspondence between the
vertices of two graphs. They are typically robust (error-tolerant) with re-
spect to changes in graph structure (such as a different number of vertices)
(Bunke and Shearer, 1998), because in many fields graphs are computed from
real-life data and their topology can fluctuate from instance to instance.

In our case, the graphs obtained have a fixed number of vertices (always
the same number of atlas regions), as well as a fixed vertex ordering (regions
are spatially defined), because of the atlasing procedure. This type of con-
nectivity graphs form a particular restricted class of graphs, for which several
general graph matching algorithms would not yield discriminative informa-
tion (Richiardi et al. (2010)). For example full graph matching, by looking
for the best possible permutation of vertices, would bring high computational
cost and is unnecessary for our application where vertex correspondence be-
tween graphs fixed and one to one. Indeed, the main use of our graphs is
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in computing discriminative information to distinguish between brain states,
and this can be done by computing the distance between graphs as a function
of the distance between the weights of the respective edges. For this reason,
we opt for the strategy of representing the graphs in vector spaces instead
of graph domains. This also allows us to use the large variety of existing
pattern recognitions methods that operate on vector spaces.

2.4. Graph embedding and feature selection

We propose the following simple embedding procedure. The adjacency
matrix A

′(i)
n,c is fully characterised by the upper triangular part above the

main diagonal. Furthermore, the vertex ordering is constant across graph
because of the atlasing procedure, as is the vertex set cardinality. For each
graph, we thus generate a feature vector F :

(
M
2

) × 1 from the edge weights

of all the edges in the upper triangular part of A
′(i)
n,c by linearising this part

of the matrix. This generates a high-dimensional feature space, and an ade-
quate classifier is required to handle the ensuing high-dimensionality learning
problem.

The variability of fMRI connectivity measures is usually high. Therefore,
a statistical thresholding technique can be used to clean up the subsequent
adjacency matrices. Achard et al. (2006) apply the false discovery rate (FDR)
procedure to the adjacency matrices of multiple subjects; the significance of
each connection within each experimental condition is assessed by building
a t-value and then corrected for multiple comparisons by FDR (Benjamini
and Hochberg, 1995). Such statistical edge pruning of the connectivity graph
corresponds to feature selection of the embedding vector where pruned edges
are mapped to zero. In the current context of comparing graphs for differ-
ent conditions using a classification approach, applying the FDR procedure
and considering the intersection is equivalent to a univariate feature selection
procedure based on the presence of a connection. It also possible to make
the feature selection discrimination-based; i.e., for two conditions the t-value
can be constructed as in a two-sample t-test (an approach demonstrated in
Section 4.4 in a post-hoc setting). Note that in this case this criterion (up
to a constant) is equivalent to the Fisher ratio (Duda et al., 2001), which
maximises inter-class distance while minimising intra-class scatter. It should
be emphasised that the feature selection procedure is based on graphs from
the training set only: in a leave-one-subject-out cross validation paradigms,
only data from N−1 subjects is used to learn which connections are statisti-
cally significant, and the computed “significance mask” is then applied to the
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test data of the left-out subject. Therefore, within a specific cross-validation
folds, all graphs have the same number of edges.

Finally, we mention that univariate feature selection is limited because
features might be individually irrelevant but provide discrimination when
used together (Guyon et al. (2007)). Multivariate feature selection could
be preferred, and has been applied to the context of brain decoding be-
fore (De Martino et al., 2008).

The multiple comparisons approach only considers feature subsets of car-
dinality 1, which corresponds to a simple ranking “search” algorithm. It is
generally agreed in filter-style feature selection2 that subsets of different car-
dinalities need to be considered and an optimum of the objective criterion
found via search (annealing, genetic, or floating search are popular).

2.5. Classification

Decision trees are discriminative classifiers performing recursive partition-
ing of a feature space to yield a potentially non-linear decision boundary. At
each decision node of the tree either a single feature f (monothetic trees)
or a function of several features f(·) (polythetic trees) is considered so that
the entropy of class labels in the partition is minimised. More precisely, if
an entropy-based splitting criterion is used, the goal is to find cutpoints of
f that minimise the conditional entropy on class labels C = {1, . . . , C} at-
tached to points in the corresponding subdomains of the discretised variable
f ′. Specifically, we can express the entropy of the dataset partitioned by the
feature f ′ as

H(C|f ′)
�
= −

2∑

j=1

Pj

C∑

c=1

Pj,c log2 Pj,c, (1)

where Pj is the relative frequency of points in the subset that have value j
for feature f ′, and Pj,c is the relative frequency of points that belong to class
c and have value j for feature f ′.

The goal of decision tree growing is then to minimise (1), which is equiv-
alent to maximising the mutual information between I(C;f ′), and involves
recursively selecting features (or discriminant functions) and computing the
result of applying different cutpoints to them. Edge weights that are put to

2Where the merit of a feature subset is evaluated via an objective criterion. This is
opposed to wrapper-style feature selection where features subset merit is evaluated directly
via classification—better subsets provide lower error.
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zero by the feature selection are never included as a feature or within a dis-
criminant function since a random variable K that has constant value across
all the dataset and classes will not decrease conditional entropy.

Polythetic trees bring two main advantages over monothetic ones; first,
decision surfaces are not constrained to be (piecewise) perpendicular to the
axis of the feature space, as they are in monothetic trees due to the fact that
each node is a decision on a single feature. This is because polythetic nodes
can be linear combinations of several features. Second, polythetic trees tend
to be more shallow, because each node has more degrees of freedom in parti-
tioning its subspace. Here, we propose to use functional trees (Gama (2004))
that can use multiple regression on a subset of features, both at decision
nodes and at leaves. The learning procedure is divided in two phases: grow-
ing and pruning. In the growing phase, at each decision node, either a single
feature in the original space, or a discriminant function based on linear com-
bination of features is used, depending on which one optimises the splitting
criterion. Thus, functional trees are hybrids between monothetic and poly-
thetic decision trees, which results in decision boundaries that are piecewise
hyperplanar oblique surfaces. In the pruning phase, functional leaves con-
sisting of discriminant functions can be replaced by a simple function that
predicts the class value. We also use logistic regression where the regres-
sion functions are learned iteratively by the LogitBoost algorithm (Friedman
et al., 2000), which is a refinement suggested by (Landwehr et al. (2005))
and implemented in the Weka framework (Witten and Frank (2005)).

For illustration purposes, we show a functional tree with three nodes and
constant leave functions in Fig. 2, along with the corresponding decision
boundary in feature space. The first split is a polythetic functional discrim-
inant function of two features x1 and x2, and the two splits in the induced
subspaces are performed on features in the original space.

Compared to SVMs with either linear or radial basis function kernels,
functional trees offer the convenience of adaptively adjusting the model ac-
cording to feature space complexity. This means that an ad-hoc switch be-
tween linear and non-linear decision boundary is effected during training,
and that very few parameters need to be optimised beforehand. The proper
use of an SVM classifier requires the careful choice of several parameters,
including at a minimum kernel type and cost parameter. This is typically
performed using a multi-dimensional parameter sweep, for example a grid
search for linear polynomial kernels.

Further on, the increased variance of decision trees compared to SVMs
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Figure 2: Functional decision tree classifier and corresponding decision boundary principle
for a two-dimensional feature space. x1 and x2 correspond to 2 different adjacency matrix
edge weights, forming a 2-dimensional feature space. In 2(b), green circles correspond to
instances of edge weights in one class (condition), while red stars correspond to instances
the other class. Hyperplanes corresponding to individual node decision boundaries are
shown in dashed lines and identified with circled letters. The overall tree decision boundary
is the piecewise linear thick line. Data is a synthetic scaled-down version of the classical
banana machine learning dataset.

(in the sense of Kohavi and Wolpert (1996) and Geman et al. (1992)) can be
turned to an advantage when ensembling several classifiers (see next Section).
The decision trees’ variance can also be reduced by bagging (Breiman, 1996),
which creates multiple “bootstrapped” sets of data by repeatedly sampling
with replacement from the training set within each frequency subband, and
then averages the prediction of the diverse classifiers trained on the bootstrap
samples.

To obtain a valid classification approach, we derive the training samples
and grow the decision trees using a leave-one-subject-out cross-validation
procedure, by which the data of N − 1 subjects are used for training, and
the data of 1 subject is used for testing. The training and testing partition
is then rotated N times. This well-motivated evaluation procedure implies
that inter-subject decoding takes place in our experimental setting.

2.6. Ensembling subband graph classifiers

Because of the differences in the functional connectivity graphs in differ-
ent frequency subbands, it is likely that the subband-specific classifiers will

9



subband 1

subband 2

subband 3

subband 4

dependency 
computation

dependency 
computation

dependency 
computation

dependency 
computation

feature
selection

feature
selection

feature
selection

feature
selection

classification

classification

classification

classification

ensembling
final 

decision

Figure 3: Flowchart of the classification and ensembling procedure, following the prepro-
cessing procedure of Fig. 1.

learn substantially different parameters. Consequently, it is also likely that
errors made by classifiers trained in different frequency subbands will be un-
correlated to a certain extent: by explicitly representing the fMRI signal at
different scales, we create diversity in classifiers.

By combining the decisions of the classifiers in each subband, and as-
suming each such base classifier performs above chance, we can in theory
obtain higher accuracy than the best single subband classifier. This inter-
esting results rests on the Condorcet jury theorem (Boland (1989)), which
states that the ensemble accuracy PMV of L independent classifiers, each
performing with accuracy pl > 0.5 and combined through majority voting,
increases monotonically as a function of the number of classifiers, and ulti-
mately reaches perfect decoding for L → ∞.

Given that the classifiers operate on subbands derived by an orthogonal
DWT, it can be expected that their output will be quasi class-conditionally
independent. In our particular case, we also note that L is at most 4. Lower
and upper achievable accuracy bounds can be obtained on finite-sized ensem-
bles (see Appendix).

The overall classification scheme is shown in schematic form in Fig. 3.

2.7. Discriminative graph construction

Based on the set of N trained decision tree classifiers, we propose to
extract the subset of connections that is most discriminative for the cross-
validation folds and give an easy-to-interpret feedback to the neuroscientists.
For that purpose, we sum the regression weights of each connection appear-
ing in a decision tree (the same connection can appear at various levels) and
multiply them by the mean classification accuracy of the fold. This yields
a composite weight for each connection indicating its discriminative power.
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Several variations on using trees to judge feature relevance could be consid-
ered as well (Breiman et al., 1984).

This procedure allows us to build a discriminative graph that repre-
sents functional connectivity that is markedly different between the con-
ditions of interest. The principle is also similar to the idea of extracting
discriminative volumes from classifier parameters using voxels’ intensity as
features (Mourao-Miranda et al. (2005); Sato et al. (2009)).

3. Materials

3.1. Subjects and data acquisition

The N = 15 subjects (4 male, 11 female) were aged between 18 and 36
years old, without history of neurological disorders. They had given written
informed consent to participate in the study, which was performed in accor-
dance with the local Ethics Committee of the University of Geneva. Scanning
was performed on a Siemens 3T Tim Trio. Functional imaging data were ac-
quired in two sessions using gradient-echo echo-planar imaging (TR/TE/FA
= 1.1s/27ms/90◦, matrix = 64×64, voxel size = 3.75×3.75×4.2mm3, 21 con-
tiguous transverse slices, 1.05mm gap, 2598 volumes). Structural imaging
data was acquired using a three-dimensional MPRAGE sequence (192 slices,
TR/TE/FA = 1.9s/2.32ms/9◦, matrix = 256 × 256, voxel size = 0.90 × 0.90
× 0.90mm3).

3.2. Experimental design

The experimental design was a blocked design with alternating epochs
of movie excerpts (50s) and resting periods (90s). All movies were excerpts
taken from commercial series. During rest, subjects are instructed to close
their eyes, relax, let their mind wander and avoid thinking of something
in particular, as usually done in resting-state studies. The movies were pro-
jected on a screen through a mirror and the auditory stimulation was provided
through MRI-compatible headphones. An empty grey display was projected
before and after each movie. At the end of the rest period, a short beep
sound was played to instruct subjects to open their eyes, followed by a dis-
play asking them to respond to a four-choices question about the content
of their thoughts during the rest period. The data collection consists of 2
sessions with 9 movie-resting blocks each, for a total session duration of 23
minutes. The movie order was pseudo-randomised across the subjects.
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One reason to use a movie task is that for reliable connectivity analysis,
about 10 minutes of data are required. Since we acquire data in 9 task-resting
blocks, using a motor task such as finger tapping would require (9x50s=) 7.5
minutes of tapping. This is likely to induce boredom and habituation in sub-
jects, as would an n-back type task, and may lead to non-cooperation and
frustration. Furthermore, in choosing an audio-visual task, we are also evok-
ing a distributed pattern of activations in subjects (at a minimum involving
the visual cortex in the occipital lobe and auditory areas in the temporal
lobes), which is likely to be more difficult to distinguish from distributed
resting-state activity than more localised tasks. This seems like a better
proof-of-concept for the feasibility of using whole-brain functional connectiv-
ity as a basis for classification.

We build up the matrix X from the blocked experimental design; i.e., for
each subject, 90 timecourses are constituted from blocks of the same condi-
tion that are concatenated after linear detrending. For the resting condition,
this approach is known to only differ from continuous resting-state analysis
in a few regions, where it tends to underestimate correlations (Fair et al.,
2007).

4. Results

4.1. Classification

Classifier training and testing are performed using the leave-one-subject-
out procedure outlined in Section 2.5. Stratified classification results are
given in Table 1 (column L = 1, α = 100%): in each of the 15 cross-validation
folds, 2 tests are performed, one for the resting and one for the movies con-
dition of a single subject. Thus, the granularity of results is about 3%. One
striking result is that lower-frequency subbands (3 and 4) have much more
discriminative power than higher-frequency subbands (1 and 2), which are at
chance level. This can attributed to the fact that low-frequency activity cor-
relations are substantially different between conditions, while the difference
in higher-frequency correlations are much more difficult to pick up.

To provide insight into the experimental conditions, we also performed
classification experiments in subband 3 by computing average regional acti-
vations per condition (thus generating a 90 dimensional vector space), after
centering each timecourse with respect to that subject’s and condition’s re-
gional temporal average vector. This yields about 76% leave-one-subject-out
accuracy for the best classifier used. If the timecourses are centred using
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Threshold α = 100% α = 5% α = 2% α = 1%

L 1 21
su
b
b
an

d 1 (0.23-0.45 Hz) 47% 53% 47% 63% 53%
2 (0.11-0.23 Hz) 53% 80% 80% 80% 87%
3 (0.06-0.11 Hz) 87% 93% 90% 90% 90%
4 (0.03-0.06 Hz) 80% 83% 83% 80% 83%

ensemble (bands 2-4) 90% 97% 90% 90% 93%

Table 1: Leave-one-subject-out overall accuracy with various significance thresholds α for
feature selection. α = 100% corresponds to no feature selection. L is the number of clas-
sifiers forming the in-band ensembles. The ensemble line refers to multi-band ensembling.

subject-specific, but inter-condition average vectors (a way to encode the dif-
ference with baseline rest activations), 100% accuracy is obtained, as would
be expected from the conditions chosen and the GLM results in Fig. 7; in
this case results cannot be directly compared with the connectivity-based
classification results because these use only data from one subject and one
condition individually for preprocessing. These results indicate that the tasks
have very distinct activation patterns, but that differences in functional con-
nectivity are slightly more subtle.

Note that when feature selection is applied, the significance masks (see
Section 2.2) are computed in-fold using only the training data. They are ap-
plied to both the training and testing adjacency matrices. When performing
feature selection, the number of connections passing the significance thresh-
old was observed to be significantly higher for low frequency subbands.

4.2. Ensemble classification

4.2.1. In-band

Within each subband, we created ensembles of 21 functional trees on
bootstrap replicas of the training data. The results are shown in Table 1. All
frequency subbands benefit somewhat from the ensembling, with subband
2 showing the most improvement, and showing substantial accuracy. This
indicates that the connectivity patterns in subband 2 are quite complex, and
the decision boundary learned by the ensemble is certainly non-linear. Sub-
band 1 sees very little improvement in accuracy, indicating that connectivity
in this frequency subband is probably not discriminative between rest and
movie conditions.
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4.2.2. Multi-band

Given the close-to-chance accuracy of the classifier in subband 1 for most
threshold settings, we excluded it from the majority voting ensemble to sat-
isfy the Condorcet jury theorem (Section 2.6). Classification accuracy for
multi-band ensembling, shown in Table 1, improves or at least is the same as
the accuracy in the best individual subband ensemble. The results are con-
sistent with theoretical lower bounds (see Appendix), which for the results
in table 1 are 0.67 in the worst case (L = 1, α = 100%), and 0.8 in the best
case (L = 1, α = 1%), while the theoretical upper bound is 1 in all cases.

An analysis of the classifier outputs suggests that the main cause for
the improvement in the single-classifier case (L = 1) despite the very low
accuracy of subband 2 is the negative correlation between the decisions of the
classifier in subband 2 and that of the classifier in subband 4 (phi coefficient
= -0.14).

4.3. Discriminative graphs

A discriminative graph H can be extracted for each subband from the
distribution of classifier parameters as explained in Section 2.7. To ease vi-
sualisation and interpretation, we split the associatedH in two discriminative
subgraphs; i.e., from the sign of the contrast “movies > rest”, obtained from
the N adjacency matrices, we derive the subgraphs H+ and H− for positive
and negative values, respectively. It should be noted that both subgraphs
carry discriminative power to distinguish conditions. However, H+ reflects
those connections that are stronger in movies than rest condition, and vice
versa. We thus have H = H+ ∪H−. The discriminative graphs are shown in
Fig. 4. Spheres represent the ”functional connectedness” of a region with the
rest of the brain - larger spheres means the region is more correlated with
other regions.

For all frequency subbands, we observe that connections that are stronger
in rest (H−) present more discriminative ability than those that are stronger
in movies. The cuneus is a majorly connected region, present in all subbands,
with particularly strong connections to occipital areas.

We also extract histograms depicting the importance (in terms of discrim-
inative power) of each connection over the 15 cross-validation folds, shown
in Fig. 5. The histograms are also colour-coded to reflect connections that
are stronger in the resting condition (in blue) and those that are stronger in
the movies condition (in red).
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Subband 4 Subband 3

Subband 2 Subband 1

Figure 4: Axial (top rows) and sagittal (bottom rows) views of discriminative graphs H
subdivided in subgraphs H+ (left columns, warm hues, connections stronger in movies
than in resting) and H− (right columns, cold hues, connections stronger in resting than
in movies) for all subbands. Connections with darker colour and thicker lines correspond
to more discriminative ability. Larger spheres correspond to more correlated regions. The
same colormap scale is used for each subband.
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It appears clearly that the most discriminative connections are always
those that are part of H− (stronger in resting). It is also noteworthy that the
connections belonging toH+ (stronger in movies) steadily gain discriminative
power with rising frequency - the proportion of H+ connections rising into
the top 50 most discriminative connections moves from 28% in subband 4
to 64% in subband 2. This is a clear indication that the “movies” network
becomes more distinctive in higher frequency bands.

Another interesting aspect is that the number of unique connections
picked up by the ensemble of functional trees classifier increases roughly
in proportion classification accuracy: Over all cross-validation folds and all
trees, 399 unique connections were selected by the classifier in subband 4,
306 in subband 3, and 568 in subband 2. This suggests that the discrimi-
native networks have a larger spatial extent with increasing frequency, and
that discriminative power is more distributed between connections at high
frequencies.

4.4. Comparison with post-hoc whole-group contrasts

We now compare discriminative graphs obtained with a simple post-hoc
group-level method in subband 3. In this method, no train/test separation
is performed. All 15 correlation matrices for the two conditions were used to
perform multiple t-tests for the difference in means of each correlation coef-
ficient. FDR correction was applied. Subsequently, a significance threshold
of α = 5% was applied to prune the matrix. Only 23 coefficients passed the
threshold.

Fig. 6 illustrates the mean condition-specific correlation matrices, the
map of p-values, and the retained connections. Coherent with the classifier-
based analysis (see Histogram of discriminative connections in Fig. 5(b)),
the cuneus has the most connectivity to other regions, and most significant
connections originate/terminate in the occipital lobe. A few connections
concern the superior temporal lobe. The connections passing the significance
threshold form a subset of the most discriminative connections found by the
classifier-based methods.

This provides a reassuring confirmation that the discriminative graphs
extracted using the classifier-based method proposed make sense in light of
a classical hypothesis testing analysis.
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(a) subband 4
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(b) subband 3
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(c) subband 2
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(d) subband 1

Figure 5: Histograms of connection discriminative ability for rest/movies classification
across 15 cross-validation folds. Only 50 most discriminative connections are shown. Dis-
criminative ability is computed as the sum of the regression weights of a connection across
folds, multiplied by the accuracy of the classifier in each fold. Red bars correspond to
connections which are stronger in movies than in resting, while blue bars correspond to
the opposite situation. Note different scales between graphs.

(a) (b) (c) (d)

Figure 6: Whole-group mean correlation matrices for resting (6(a)) and movies (6(a)) con-
ditions in subband 3, contrast t-test p-values (6(c)), and position of significant connections
(6(d)). Region labels are as per AAL atlas and Fig. 5(a)
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4.5. General linear model analysis

For comparison purposes, we also perform a standard confirmatory anal-
ysis based on the general linear model (GLM). The realigned data is anal-
ysed using conventional SPM methodology. Specifically, the design matrix
is constructed for each subject to model movies versus rest, and the content
question that is asked after each resting period is added as a covariate of no
interest. The stimulation functions are then convolved with the canonical
haemodynamic response function. We also add the realignment parameters
and low-frequency components (cut- off frequency at 1/256Hz). The GLM
model is fitted for each subject and the estimated contrast of interest is fed
into a second level analysis after normalisation and regional averaging.

The positive (movies > rest) and negative (rest > movies) contrasts are
shown in Fig. 7. During the movies condition, increase in activity is observed
in visual, auditory, and multisensory regions (mostly occipital and large ex-
tents of the temporal cortex). During rest, brain regions associated with the
default mode network (Raichle et al., 2001; Greicius et al., 2003) were sig-
nificantly active, including posterior and anterior cingulate, bilateral insula,
and bilateral inferior parietal lobules.

5. Discussion

5.1. Classification

The relatively high number of connections that are retained by statistical
feature selection (Section 2.4) in the low-frequency subbands, with respect to
the number retained in higher-frequency subbands, hints at the presence of
resting-state networks that are consistent across subjects (Damoiseaux et al.
(2006); Mantini et al. (2007)), which in turn yields relatively low inter-subject
standard deviation on the weights of graph edges that these networks com-
prise. Not only are low-frequency connections more consistent across sub-
jects, but those that are stronger in resting than in movies (edges of H−)
are also much more discriminative. This strongly suggests that much of the
inter-subject discriminative ability between the two cognitive states is due
to the inter-subject topographical consistency of functional connectivity in
resting state. Applying the methodology to other tasks, which may elicit
responses that are generally coherent between normal subjects (such as face
viewing), would probably yield different results, and it may be that discrim-
inative characteristics would be more distributed between conditions.
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Figure 7: Axial, coronal, and sagittal slices (MNI normalised and region-averaged) showing
the contrast movies versus rest at the group level. Colour correspond to t-values. The red-
to-yellow colormap corresponds to movies, while the purple-to-blue colormap corresponds
to resting.

In general, feature selection in low subbands seems to have no effect, while
it might improve classification accuracy in higher subbands. The first expla-
nation is that, in low subbands, even at α = 1%, most of the connections
are retained, potentially due to the effect explained above. Thus, in low sub-
bands, much lower significance values would be needed to have a noticeable
effect. In high subbands, it is possible to find a setting of α that yields better
accuracy, but it is by no means obvious to predict which threshold will pro-
duce the best result. This difficulty can be attributed to two factors. First,
the search strategy, or lack thereof. In reproducing the common practice
of FDR thresholding, we have shown that performing multiple-comparison
correction for edge pruning is at its core a univariate ranking-based feature
selection method. This means that feature that are irrelevant taken individ-
ually, but jointly predictive, will be missed. Second, our choice of classifier
performs embedded feature selection, that is, classifier training includes a
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specific objective function to select a subset of features that minimises pre-
diction error. Preemptively throwing out features in this context, according
to another objective criterion (t-test) can undermine good performance or
happen to improve it.

However, it is likely that more weakly regularised classifiers or those that
do not perform embedded feature selection might benefit from this approach
to feature selection (Guyon et al. (2005)). This emphasises the fact that fea-
ture selection and classifier training should not be performed in isolation; i.e.,
optimising one objective criterion, such as the Fisher ratio, is not guaranteed
to tighten the error bounds on the classifier.

In terms of comparing our classification results to other state-of-the-art
machines, we note that our bagged subband classifiers perform the same as
a linear polynomial SVM (parameters optimised via in-fold cross-validation)
two subbands (subband 1 and 3) and slightly worse in two subbands (sub-
bands 2 and 4). Even so, the small amount of test data causes these differ-
ences to be insignificant (McNemar test, p=0.05). The number of parame-
ters used by decision trees to achieve our results is much smaller (typically
at most 20 attributes are used in each tree, with significant overlap between
trees trained over different bags), leading to more interpretable models.

5.2. Discriminative graphs

We start by examining the connection histograms in Fig. 5. For each
subband, only a small fraction of the 4005 edges of the complete connectivity
graph is retained by the classifiers (399 for subband 4, 306 for subband 3,
568 for subband 2). Moreover, less than about 10% of these connections are
most discriminative, which is more than two orders of magnitude lower than
the total number of edges. Further on, we observe a transition from resting
to movies condition for the most discriminative connections as we go from
low to high frequency subbands. The strong connections in subband 4 (0.03–
0.06Hz) belong mainly to the resting condition; i.e., low-frequency coherent
BOLD fluctuations are reminiscent of resting-state networks. Discriminative
connections in the intermediate subband 3 (0.06–0.11Hz) are intermingled
between resting and movies. For subband 2 (0.11–0.23Hz), the proportion
of connections stronger in the movies condition sees an important increase.
Finally, the discriminative importance of connections in subband 1 (0.23–
0.45Hz) is very limited; this subband mainly contains noise due to the slow
signal changes associated with the haemodynamic response. In general, the
different connectivity patterns across subbands demonstrate the advantage
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of using the wavelet transform. The fact that low-frequency subbands are
mainly dominated by connections stronger in resting condition is in line with
the fMRI resting-state literature.

Discriminative graphs in anatomical space for subbands 1–4 are shown in
Fig. 4. During rest (H−), the cuneus appears as a hub in a number of highly
discriminative connections toward occipito-temporal regions (subbands 2–
4). The significant increase of functional connectivity within visual areas
during rest or, equivalently, de-coherence during movie watching, has been
reported before (Nir et al. (2006)). It is also known from visual mapping
studies that spatial de-coherence breaks down into patterns with different
functional specialisation (Grill-Spector and Malach (2004)). The fact that
these connections are discriminative form a compelling argument that the
underlying BOLD fluctuations have a neuronal basis and cannot attributed
to non-neurophysiological sources such as cardiac and respiratory oscillations
only. Furthermore, the connectivity patterns also nicely generalise over sub-
jects (since we classify an unseen subject), in accordance with Hasson et al.
(2004) who found correlating activities between different subjects watching
the same movie.

The intermediate subbands 2 and 3 are particularly interesting since con-
nections of both conditions contribute to successful classification. Intrigu-
ingly, BOLD activity relatively increases in dorsal areas during rest versus in
ventral areas during movies (see Fig. 7). One possible explanation might be
the distinction between intrinsic versus extrinsic activity in parietal versus
sensory regions as described by Golland et al. (2007).

Finally, these results confirm that functional connectivity analysis can
benefit from filtering timecourses in separate frequency bands as clear differ-
ences were observed between the subbands, allowing extraction of different
brain networks and probably reflecting different functions (e.g., stimulation
versus rest). This view is consistent with recent work in combined EEG-fMRI
studies, where distinct functional networks are observed at different EEG fre-
quency bands (Mantini et al., 2007), although at much higher frequencies for
EEG than fMRI.

5.3. Activity versus connectivity

The results of the GLM analysis (see Fig. 7) reveal that, as expected,
activity is increased during movies in visual, auditory, and multisensory re-
gions, while typical default-mode regions are deactivated (posterior and ante-
rior cingulate cortices, bilateral anterior insula, and bilateral inferior parietal
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lobules). It is striking that functional connectivity between areas that suc-
cessfully contributed to the classification task, was often stronger for regions
during the condition for which they showed less activation.

For example, cuneus, occipital and temporal regions are clearly activated
during movies, however, connectivity between cuneus and occipital and tem-
poral regions increases significantly during rest and even constitutes a dis-
criminative feature between both conditions at low frequencies (subbands
2–4). From the opposite side, midline brain areas are deactivated during
movies while showing increased connectivity at high frequencies (subband
2).

It is possible that brain regions differentially engaged by active “task”
processing appear not functionally connected according to pairwise linear
correlations, but that (conditional) non-linear relationships such as provided
by (conditional) mutual information measures would draw a different pic-
ture. In any event, these findings demonstrate that connectivity measures
contribute to reveal functional organisation differently than sole activation.
More generally, these data point to the fact that frequency information may
provide very important information when investigation large-scale brain con-
nectivity.

5.4. Potential for applications

One important feature of the proposed methodology is that the classifi-
cation is based on the connectivity pattern of a single condition; i.e., we do
not use connectivity differences between two conditions to create a relative
baseline. This makes the method particularly interesting to be applied to
the clinical setting; i.e., to distinguish between control and patients. In par-
ticular, there is an increasing amount of evidence favouring the presence of
a specific anatomical connectivity subtending functional connectivity (Teipel
et al. (2010)) that points to the important role that functional connectivity
analysis could play in early diagnosis and differential diagnosis; e.g., neurode-
generative and inflammatory diseases.

It is well known that the default-mode network is affected by dementia
and other diseases (Buckner et al. (2008); Wang et al. (2007)), and func-
tional connectivity changes are known to be present in a variety of cogni-
tive deficits, even when structural damage is not apparent. For example,
differences in inter-hemispheric intra-parietal sulcus correlations can indi-
cate post-stroke spatial neglect even when no structural damage is present
(He et al. (2007)). Other diseases or trauma characterised by diffuse white
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matter lesions, such as multiple sclerosis or axonal damage sustained from
head injuries, are likely candidates for causing significant alterations in func-
tional connectivity. The use of the technique in psychiatric diseases where
a dysfunction of distributed networks exist, such as schizophrenia (Bluhm
et al., 2007; Garrity et al., 2007), autism (Kennedy and Courchesne, 2008),
or obsessive-compulsive disorder (Harrison et al., 2009), could also be partic-
ularly valuable where traditional univariate or single ROI methods are likely
to be difficult to apply. Our method is data-driven and therefore does not
rely on strong hypotheses about existing resting-state networks. Specifically,
it is well possible that connections belonging to a subnetwork turn out to be
most discriminative.

6. Conclusion

In summary, we have proposed a classification approach to infer brain
states from functional connectivity graphs, instead of the commonly used
brain voxel activation values. We have shown that the approach is applica-
ble to inter-subject brain decoding with good results, and that interpretable
output can be generated. We have demonstrated the feasibility using a cogni-
tive task and compared the discriminative connectivity graph with SPM-style
activation patterns. The potential of the proposed methodology lies in situa-
tions where connectivity measures are the most readily available, such as for
comparing resting-state fMRI between patients and control groups, but also
provides complementary information to task-based acquisition paradigms.
The method fits well with current trends in clinical neuroscience where mul-
tivariate pattern recognition techniques are increasingly used to find increas-
ingly subtle effects in data, inaccessible to mass-univariate methods (Bray
et al., 2009).

The current atlasing procedure uses rather coarse-grained brain regions.
While this might reduce inter-subject variability, future improvements could
be obtained by using more sophisticated segmentation and atlasing methods;
e.g., surface-based segmentation (Dale et al., 1999; Fischl et al., 1999) and
function-based inter-subject mapping (Sabuncu et al., 2010) or “alignment-
free” methods (Anderson et al., 2010).
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Appendix A. Accuracy bounds for majority voting combination

Matan (1996) has shown that for an ensemble of L classifiers, the upper
and lower bounds on achievable majority voting accuracy are given by:

Pmax = min(1, f(τ), f(τ − 1), . . . , f(1)), (A.1)

Pmin = max(0, g(τ), g(τ − 1), . . . , g(1)), (A.2)

where the functions f(τ) and g(τ) are defined in terms of a specific majority
decision threshold τ ′ (an integer) and base classifier accuracies pl:

f(τ ′) =
1

τ ′

L−τ+τ ′∑

l=1

pl. (A.3)

g(τ ′) =
1

τ ′

L∑

τ−τ ′+1

pl − L− τ

τ ′
. (A.4)

Thus, it can be seen that majority voting ensemble accuracy is a linear func-
tion of component classifier accuracies. Note however that this bound does
not take into account classifier diversity, a very important and somewhat ill-
defined parameter of ensembling. The diversity-accuracy tradeoff is explored
in more detail in Meynet and Thiran (2007).

As an illustration, depending on the diversity of the ensemble, majority
voting with 3 classifiers barely above chance (51% accuracy on a two-class
problem) can yield accuracies between 27% and 77%, while a stronger en-
semble (say, three classifiers at 70% accuracy) can yield accuracies between
55% and 100%.
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