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Abstract. Multivariate time series are sequences, whose order is pro-
vided by a time index; thus, most classifiers used on such data treat
time as a special quantity, and encode it structurally in a model. A typ-
ical example of such models is the hidden Markov model, where time is
explicitely used to drive state transitions. The time information is discre-
tised into a finite set of states, the cardinality of which is largely chosen
by empirical criteria. Taking as an example task signature verification,
we propose an alternative approach using static probabilistic models of
phase spaces, where the time information is preserved by embedding
of the multivariate time series into a higher-dimensional subspace, and
modelled probabilistically by using the theoretical framework of static
Bayesian networks. We show empirically that performance is equivalent
to state-of-the-art signature verification systems.

1 Introduction

Multivariate time series appear in a vast array of engineering applications, such
as computational finance, biosignal processing (e.g. EEG, EMG), bioinformatics,
or brain-machine interfacing (which can have tens of data channels). Automatic
classification of these time series into pattern classes is often of interest, for
example for earthquake detection (which typically is based on two or more data
channels) or behavioural biometrics (e.g. speech, signature, gait).

Probabilistic state-space methods such as hidden Markov models (HMMs)
offer several advantages over classical time-series models (e.g. ARMAX), for
instance handling of hidden variables, continuous and discrete spaces for random
variables, and specification of priors [10]. HMMs are top-performing classifiers
for signature verification [1, 3]. However, while they are very commonly used,
HMMs suffer some important drawbacks, for example feature vectors are deemed
conditionally independent given the sequence of states. To relax this unrealistic
assumption, techniques have been proposed to model the “trajectories” of the
time series across states, for instance in speech recognition [8]. It is also possible
to use more general dynamic probabilistic models such as dynamic Bayesian
networks, and to model the inter-state relationships between the variables of the
time series.
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Conversely, many discriminative classification methods that perform very
well with static1 multivariate data, such as random forests [2] or multilayer
perceptrons, do not yield good results when applied directly to the modelling of
time series, since variability in onset or duration is not handled by default.

In this paper, we propose a middle way between static discriminative clas-
sifiers and dynamic generative models, by using a static generative model to-
gether with specific feature extraction steps. We use a specific topology of static
Bayesian network that is equivalent to a Gaussian mixture model (GMM) to
perform classification of multivariate time series, as applied to a handwritten
signature verification task2. We show that, by using appropriate features ex-
tracted from the time series, the framework of static Bayesian networks offers
an elegant approach to classification of multivariate time series. The underlying
principle is to consider that the observable time series data available are in fact
a projection from the phase space of higher dimension of an original dynamic
system.

The remainder of this paper is organised as follows: In Section 2, we briefly
review the theory of phase space reconstruction, drawing attention to the work
of Povinelli et al. [14]. In Section 3 we propose a general framework for classifying
features that can be extracted from a multivariate time series, linking in more
specifically with signature verification. In Section 4, we propose the use of delta
features for phase space reconstruction, and show that they posess significant
advantages over the more classically used method of delays. Section 5 presents
experimental results on two signature databases, which are discussed in Section 6.

2 Phase space reconstruction

Phase space reconstruction can be approached through the Takens theorem [18]:
Given a (regularly sampled, univariate) time series, it states that, under certain
conditions, it is possible to reconstruct a multidimensional phase space which
corresponds to the same dynamical system as the one which originally generated
the time series, but in a different system of coordinates: there is a diffeomorphism
between the two spaces. In other words, the values of the (univariate) time series
are seen as a one-dimensional projection of the trajectory in multivariate phase
space of the dynamical system under consideration.

One sufficient condition entailed by the Takens theorem is that, for a map to
exist between the original and the reconstructed space, we must have

D ≥ 2D + 1, (1)

where D is the embedding dimension of the reconstructed space, and D is the
box-counting dimension of the trajectory in the original space. The principle

1 In this paper, static data means that there is no time dependence between feature
vectors. For models, it means that time is not part of the model structure.

2 This paper offers a theoretical explanation for the performance of our original pro-
posal of using Gaussian mixture models for signature verification [15]
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behind this theorem is that two points should lie close together in D dimenions
not because D is too small, but because their proximity is a property of the
set of points. The box-counting dimension is difficult to compute in some cases,
when not much data is available and/or dimensionality is high [5], and can be
approximated by methods such as the false nearest-neighbour algorithm [9] or
the correlation integral approach [5].

The coordinates used for embedding must also be chosen. Typically, the co-
ordinates used are the time series o(t) itself, and integer multiples of the lagged
time series (o(t + τ), o(t + 2τ), . . .). While in principle, with an infinite number
of noiseless datapoints, the delay τ could be chosen almost arbitrarily [18], in
practice heuristics are applied to select this parameter. Typically, either the first
zero of the autocorrelation function (corresponding to linear independence of
the coordinates) or the first minimum of the automutual information function
(a more general notion of independence) are used to select the optimal τ .

Recently, phase space reconstruction has been applied to statistical classifi-
cation of time series. Imhoff et al. [6] proposed using statistical models of recon-
structed phase spaces in medicine, and Povinelli et al. [14] used the method of
delays for ECG classification and speech recognition. As we will show in Sec-
tion 4, delay coordinates have several shortcomings which can be addressed by
the use of other coordinates.

3 Features for multivariate time series classification

Approaching multivariate time series classification from a statistical pattern
recognition viewpoint, an important family of methods is to transform the orig-
inal signal into another feature space before attempting classification.

For many applications, the goal is to build the most discriminative classifier
possible: the semantics associated to states (e.g. for evolution of a disease over
time) are of no interest. Indeed, it is even possible that the time series be trans-
formed from a sequence into an unordered set, while maintaining or improving
discriminative abilities in comparison to dynamic classifiers.

To recognise patterns in time series, the signal representation and/or the
classifier must be made resilient to changes in the aspect of the pattern, for
example in amplitude, onset, or duration. To this end, several feature extraction
schemes are possible:

Local features are extracted at the same rate as the sampling of the incoming
signal: that is, each input sample data vector corresponds to a local feature
vector. Segmental features are extracted once the time series has been cut into
segments or windows. The segmentation paradigms vary, but a segment typically
consists of a sequence of points for which some definition of coherence holds.
Global features summarise some property of the complete observed time series;
for instance the total duration of the signal.

In all three cases, features can be computed from single or multiple variables
in the multivariate time series. In signature verification, all three types of features
have been used [17], and they can be combined in multiple-classifier systems [16].
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4 Delta features for phase space reconstruction

The first and second time derivative of local features, referred to in speech pro-
cessing as delta (∆) and delta-delta (∆∆) features, can be used to improve the
discriminative ability of the base feature set.

Since the signal is sampled at discrete time intervals, we use a numerical
approximation of a first order derivative. By definition:

df(·) = limǫ→0
f(·+ ǫ)− f(·)

ǫ
, (2)

which we replace by second order regression using the central difference ap-
proximation. Boundary effects are avoided by switching to a forward difference
approximation when necessary. Thus, for the tth term in the vector sequence of
length T we obtain:

df(·t) ≈
f(·t+1)− f(·t−1)

2
+
f(·t+2)− f(·t−2)

4
. (3)

We posit that the key to the effectiveness of static probabilistic models for
classifying multivariate time series lies in the use of delta features and features
that are functions of derivatives of the raw sampled data.

Support for this hypothesis is to be found in a particular method of phase
space reconstruction: [12, 18] have shown that, in addition to the method of
delays, phase space reconstruction can be performed by using first, second, and

successive derivatives of a (univariate) time series do
dt
, d

2o
dt2
, . . . . Under condition

that the Takens theorem is satisfied, this set of coordinates yields an embedding.
Thus, by using delta features, we are in fact reconstructing a phase space S.

This means that the dynamics of the time series (e.g. signature) can asymptoti-
cally be fully modelled without the need to resort to dynamic models. Because
we also use other features (e.g. pressure), we obtain a feature space S ′ that is
of a higher dimension than the corresponding reconstructed phase space S, and
embeds it. We can then view the training of a generative model on the vectors
in this space as the computation of a statistical model of distribution of features
in S ′. This approach was proposed in [14], using delay coordinates.

Reconstructing the phase space using delta features overcomes some original
restrictions of the method of delays to univariate time series. Indeed, in order to
compute an embedding into phase space for multivariate time series using the
method of delays, it is necessary to estimate the optimal embedding lag (optimal
delay coordinate) τ̂d for each of the dimension d in the multivariate time series
independently. If these optimal embedding lags are not equal, the result is that
the phase spaces reconstructed for each of the variables of the original time series
will differ in length. Then, the problem of combining the different phase spaces
is not trivial to solve [4]. It is also possible to consider (potentially suboptimal)
equal time lags for each of the variables in the time series [14]. Using delta
features, all the phase spaces reconstructed have the same length.

Also, if the signal available is small (e.g. 60 samples), and the optimal lag
computed is large with respect to the signal duration, higher-order lags (e.g. 3τ
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or 4τ) may actually not be computable. Using delta coordinates alleviates this
problem: phase space coordinates can be computed on small amounts of data.

One potential disadvantage of delta coordinates is noise amplification with
successive derivatives,but in practice this can be overcome by low-pass filtering
and/or robust derivative extraction (e.g. by fitting Legendre polynomials and
taking an analytic derivative).

5 Experiments and results

5.1 Signature databases and verification systems

We use two different signature databases for our experiments.
The MCYT database [11] contains signature and fingerprint data for 330

users. We use a 100-users subset of this database, called MCYT-100.
The BMEC 2007 development database contains 50 users and is part of the

larger BioSecure DS3 dataset. Signatures are acquired on a low-power mobile
platform (Ipaq PDA). For both databases, skilled forgeries are used (between
levels 6 and 8 [7]).

The classifier used is a static Bayesian network functionally equivalent to
the Gaussian mixture model proposed in [15], and is denoted BN/GMM. The
number of diagonal covariance Gaussian mixture components is varied, but the
initialisation is always performed using the k-means method, followed by the
expectation-maximisation algorithm until convergence. The feature set depends
on the experiment and database. The first 5 authentic signatures of the first
session are used as training samples for each user.

5.2 Classification with delta features

In this first set of experiments the goal is to empirically demonstrate the benefits
of modelling reconstructed phase spaces with delta coordinates instead of only
the base feature vector, and to show the superior performance when compared
to delay coordinates.

For the first experiment, the base feature spaces considered is a univariate
feature space using only the coordinate xt (univariate time series). The second
feature space consists of the phase-space reconstruction (x, ẋ, ẍ), which is an em-
bedding dimension of 3. For both feature spaces, the parameters of a BN/GMM
classifier, using 40 Gaussian mixture components, are trained using expectation-
maximisation. As can be seen in Figure 1, training a statistical classifier on the
reconstructed phase space yields better significantly better results (McNemar
test on classification decisions, thresholded a posteriori, p < 0.01) than clas-
sification on the initial time series itself, for both phase space reconstruction
coordinates used. While not reported here, the results obtained with other uni-
variate coordinates (e.g. y) and on other databases are comparable.

For the second experiment, the classification performance over a derivative-
coordinates phase space (x, ẋ, ẍ) reconstructed from a univariate time series is
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compared to the classification performance over a delay-coordinates phase space
(xt, xt+τ , xt+2τ ). The lag is chosen as the mode of the distribution of lags for
each user’s training, respectively testing, signatures, as per [14]. Figure 1 shows
that on this task, a substantial reduction in error rate can be obtained by using
phase space reconstruction, and preferring delta coordinates to delay coordinates
(statistically significant at p < 0.01).

The third experiment reconstructs a phase space from a multivariate time se-
ries (xt, yt), resulting in a phase space (x, ẋ, ẍ, y, ẏ, ÿ) for derivative coordinates,
and (xt, xt+τ , xt+2τ , yt, yt+τ , yt+2τ ) for delay coordinates. Again, it can be ob-
served from Figure 1 that both coordinate systems yield improvements over the
base feature space, and that more improvement results from the use of derivative
coordinates (statistically significant at p < 0.01).

Our experiments on time series datasets not related to biometrics or signature
verification (e.g. ECG, gestures, machine control) show that these trends are
generally confirmed: that is, training a BN/GMM classifier in the reconstructed
phase space tends to yield significantly better classification accuracy than what
is obtained in the base space, and delta coordinates yield better results than lag
coordinates.
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(b) Multivariate time series

Fig. 1. DET curves for classification of univariate (x, left panel) and multivariate
((x, y), right panel) time series in the phase space with delay coordinates (τ) and
delta coordinates (∆).

5.3 Comparison with dynamic models

In this series of experiments we compare our static BN/GMM classifier with
hidden Markov models of equivalent model complexity: the number of free pa-
rameters is kept in the same range. It was chosen to compare 5- and 2- states
HMMs to the BN/GMM baseline system, using diagonal covariance matrices.
The HMMs have a strict left-to-right topology. Both the BN/GMM and the
HMM models are initialised using k-means clustering.
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In order to assess statistical significance of the difference between classifiers,
we compute the EER threshold a posteriori on the classifier outputs, apply it to
the output, yielding decision vectors on which we then perform the McNemar
significance test with p = 0.05.

On MCYT-100, the feature vector used is

ot=[xt,yt,pt,θt,vt+∆+∆∆]′=[xt,yt,pt,θt,vt,ẋt,ẏt,ṗt,θ̇t,v̇t,ẍt,ÿt,p̈t,θ̈t,v̈t]
′, (4)

where xt and yt are instantaneous position on the horizontal plane, pt is
instantaneous pressure, θt is instantaneous pen trajectory tangent, vt is instan-
taneous velocity.

The classifiers compared are a BN/GMM model with 30 Gaussian mixture
components (929 free parameters), a two-states, 15-Gaussian components HMM
(930 free parameters), and a five-states, 6-Gaussian components HMM (933 free
parameters). Figure 2 shows that results are very slightly worse for the BN/GMM
than the HMM classifiers at EER, but not statistically significantly so (p = 0.05).

On BMEC 2007, the feature vector used is ot = [xt, yt, ẋt, ẏt, ẍt, ÿt]
′. The

classifiers compared are the BN/GMM model with 20 Gaussian mixture compo-
nents(259 free parameters), a two-states, 10-Gaussian components HMM (260
free parameters), and a five-states, 4-Gaussian components HMM (263 free pa-
rameters). Figure 2 shows that the difference in error rates between these models
is not statistically significant (p = 0.05). As a comparison point, the BioSecure
reference system (based on HMMs) on the same data achieves 15% EER.

  0.1   0.2  0.5    1     2     5     10    20    40  

  0.1 

  0.2 

 0.5  

  1   

  2   

  5   

  10  

  20  

  40  

False Alarm probability (in %)

M
is

s 
pr

ob
ab

ili
ty

 (
in

 %
)

MCYT100

S=1, M=30, EER=3.2 %
S=2, M=15, EER=3.1 %
S=5, M=6, EER=2.9%

(a) MCYT-100

  0.1   0.2  0.5    1     2     5     10    20    40  

  0.1 

  0.2 

 0.5  

  1   

  2   

  5   

  10  

  20  

  40  

False Alarm probability (in %)

M
is

s 
pr

ob
ab

ili
ty

 (
in

 %
)

BMEC 2007

S=1, M=20, EER 13.5%
S=2, M=10, EER 13.0%
S=5, M=4, EER 13.5%

(b) BMEC2007

Fig. 2. Comparison between the BN/GMM model and HMM models with equivalent
number of parameters (S, number of states, and M , number of Gaussian components
in the mixture) on MCYT-100 and BMEC 2007.

The same trends are observed on SVC 2004 database [19], where the com-
parison of a 50-mixture components BN/GMM to a 2-states, 25-components per
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state and a 5-states, 10 components per state HMM yield insignificantly different
results (p = 0.05);

6 Discussion

The use of delta features in speech and signature verification using HMMs was
originally motivated by the need to relax the Markov assumption between feature
vectors of close states. Delta features have been a common occurence in static
models of speech such as used in speaker verification. However, we think that
considering the use of delta features in the light of phase space reconstruction
theory yields interesting insights into their impressive effectiveness in improving
discrimination between classes.

In signature verification, this can be attributed to the fact that the dynamics
of the signature are unfolded by embedding into a higher-dimensional subspace,
where the specific topology of each user’s signature is more apparent in the phase
space than when projected down to a single dimension. Since a handwritten
signature is the result of a high-order graphomotor process controlled by several
parameters [13], it is reasonable to attempt this reconstruction.

The better results obtained for delta coordinates over delay coordinates do
not seem to stem from the choice of method used for selecting the optimal lag.
We have used both the “first minimum of automutual information” and the “first
zero crossing ot the autocorrelation function” heuristics to estimate the optimal
lag, and arrived at generally better results with the automutual information.
However, both tend to yield small lags, and the resulting reconstructed orbit in
phase space is generally stretched along the identity line: the representation in
phase space may be needlessly complicated. Secondly, the heuristics mentioned
are not necessarily optimal for classification, as observed in [14].

Finally, comparing results with HMMs shows that, for classification tasks
on signature data, static models using phase-space signal representations may
perform as well as dynamical models. This can be attributed to the fact that
time information is embedded in the orbit of the signal in reconstructed phase
space. Indeed, for signature time series, static BN/GMM models do not perform
on-par with HMMs when no time-dependent information (such as delta features
or other features based on derivatives) is included in the feature space.
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