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Abstract. A large number of features can be used to represent on-line handwritten signatures in verification
tasks. Depending on the signature database and acquisition conditions, some features will not help in separating
writers in the feature space so that an appropriate decision boundary willbe hard to estimate. Other features will
provide good separability between legitimate system users and their forgers. This paper proposes a signature
feature selection algorithm combining a modified Fisher ratio cost function and a sub-optimal but fast search
method to explore an initial feature space of candidate global features. Alarge number of candidate feature
subsets of various sizes is evaluated, and it is shown that our modified Fisher ratio correlates highly with
experimental verification error rates. The need for forgery data in thefeature selection phase of signature
verification systems development is also investigated, and we postulate thatuser-to-user separation is a good
indication of user-to-forger separation.
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1. Introduction
Over the years, many features have been proposed to represent signatures in verification tasks. We distinguish
betweenlocal features, where one feature is extracted for each sample point in the input domain,global features,
where one feature is extracted for a whole signature, based on all sample points in the input domain, andsegmental
features, where the signature is subdivided into segments (typically based on velocity) and one feature is extracted
for each segment. This paper focuses on global features.
Signature verification can be considered as a two-class pattern recognition problem, where the authentic user is a
class and all her forgers are the second class. Feature selection refers to the process by which descriptors (features)
extracted from the input-domain data are selected to provide maximal discrimination capability between classes.
In previous work on feature selection for signature verification, statistical methods such as Linear Discriminant
Analysis (LDA) have been applied for segmental features to obtain the discriminative power of each individual
feature [2]. In [5], a statistical distance measure (feature-by-feature difference of means between two users scaled
by standard deviation) is used to select the best feature subset out of a 42-features and a 49-features candidate
list. In [1], a backwards search procedure starting from 44 global features is used with an equal error rate (EER)
cost function to select a subset of features. Selection of local features based on classifier score (match distance
called dissimilarity measure) is performed in [4]. Recently, a mix of 22 local and global features extracted from the
SVC 2004 database were extracted and ranked individually bya “consistency” measure, essentially a difference of
distance measure-specific means scaled by the standard deviations [6].
For our research, we gathered a large number of global features (more than 150 extracted from 60 papers dating
from 1983 to the present) and we use a near-optimal feature space search algorithm (the floating search) along
with an improved version of the Fisher ratio as a cost function. In order to take into account effects of correlation
between feature vector components, the cost is computed on whole feature vectors instead of individual features.
Because class separability depends on the classifier used, the best feature vector will not be the same for different
classifiers [3]. Therefore, we are narrowing the problem down to finding the optimal feature vector with respect to
a Bayes classifier.
Our approach works as follows: a series of search steps (described in Section 3.) starting from an initial set of
features is used. At each search step a cost function (described in Section 2.) measuring the discriminative ability
of the feature subset is applied. We then correlate cost function value with the equal error rate (EER) of a Gaussian
mixture model (GMM) classifier for signature verification (Section 4.).

2. Measuring discriminative ability of feature subsets
In order to evaluate a candidate feature vector subset at each search step, it is necessary to define an objective
measure or cost function. The measure should be high when classes are more easily separable in feature space.
Many types of cost functions can be used for feature selection, encompassing distance measures (e.g. Euclidean
distance, Divergence, Bhattacharyya distance), information content measures (e.g. Mutual information [10]), and
error-rate measures, where the error rate of the classifier is used directly as a criterion to evaluate the current subset
(wrapper method).
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For this work, we use a modified version of the Fisher ratio as acost function, which we explain below.
The Fisher ratio provides a good mathematical framework forexpressing the idea that within-class variability
should be small, while between-class variability should belarge. The within-class scatter matrix is defined as
follows:

Sw =
M∑

PmΣm, (1)

whereM is the number of classes,Pm is the prior probability of classm, andΣm is an estimate of the covariance
matrix. The class covariance matrix is computed as:

Σm = E[(x − µm)(x − µm)T ], (2)

whereµm is the mean of classm features. The between-class scatter matrix is defined as:

Sb =

M∑
Pm(µm − µ0)(µm − µ0)

T , (3)

whereµ0 is the global mean vector, computed over all classes as follows:

µ0 =

M∑
Pmµm, (4)

From Eqs. 1 and 3, one computation commonly used for the “classical” Fisher ratio is:

J =
trace(Sb)

trace(Sw)
(5)

Thus,J will be large when class samples (signature presentations)are narrowly clustered around their class means
and class clusters are well separated. However, one problemwith this definition is that the between-class separation
is only measured with respect to the global mean. Therefore,if the weighted sum of individual class distances to
the global mean (trace ofSb) stays the same,J will not become larger for classes that are pairwise furtherapart. To
correct this problem, we add an Euclidean distance termE, representing the averaged two-by-two distance between
class means, to theJ criterion (of which we take the root because it represents a ratio of squared distances):

E =
1

M(M − 1)/2

∑

i6=j

dist(µi, µj) (6)

J ′ =
√

J + E (7)

2.1 What definition of class should we use?
Signature verification is a unique biometric modality because it is the only one to be systematically tested against
dedicated impostors instead of random impostors. Thus, while in modalities such as face verification the class
definitions are clear cut (user’s face versus all other faces), in signature verification we have two possibilities.
The first possibility is to consider each user as a class, and to compute the modified Fisher ratioJ ′ of equation 7
using these classes (as many classes as users). This will measure the separability between authentic users, which is
equivalent to measuring the separation ability of a featuresubset for random impostors. We denote this definition
of our measureJω.
The second possibility is to define two classes for each user:one authentic class and one forgery class. In this case
the modified Fisher ratioJ ′ is computed, for each user, with these two classes. Then, themean over all the users is
computed to produce what we call the “authentic-forgery” cost functionJω̄.

3. Search method
With a large number of initial features, exhaustive search of the feature subset space becomes computationally
intractable, as an initial set ofF features would result in2F

− 1 possible combinations. Therefore, we use floating
search [8], a suboptimal search strategy which affords the flexibility of reconsidering a previously discarded feature
or to remove a selected feature. Once the floating search has reduced the initial feature set to a more tractable
dimension, optimal (exhaustive) search can be performed onthe reduced space of potential feature subsets.

4. Experiments
The database used for the tests is a 25-users subset of the MCYT database [7], which provides(x, y) coordinates,
pressure, azimuth and elevation data sampled from a Wacom Intuos2 tablet at 100Hz. Each user has 25 authentic
signatures, and a total of 25 forgeries collected from 5 different forgers. The forgers were allowed to practice
forgery as they needed and were provided with a static representation of the signature. Preprocessing is done
by translating each signature to start at coordinates(0, 0), but no rescaling or rotation takes place because the



acquisition was done using an inking pen on a strict paper grid providing immediate feedback and orientation
information. The 46 global features extracted for these experiments were selected from our list of more than 150
features for their representativity and frequent use in signature verification litterature. They are shown in Table 1.

number of samples (T ) signature height (H) signature width (W )

H to W ratio T to W ratio avg. velocity

max velocity avg. velocity÷ max velocity avg.x velocity

var. ofx velocity num. pts. with positivex velocity RMS velocity

var. of velocity pen down samples (Td) time of max velocity÷Td

time of maxx velocity÷Td RMS acceleration avg. acceleration

var. of acceleration avg. pressure max pressure

point of max pressure avg. azimuth avg. elevation

avg.y velocity x y velocity correlation first moment

max pressure-min pressure maxx velocity avg.x acceleration

maxy velocity avg.y acceleration var. of pressure

point max. velocity÷Td num. points with negativex or y velocity÷Td

max. acceleration num. points with positivex or y velocity÷Td

tangent histogram in 8 quadrants:Sq = card
�
θt : (q − 1)π

8
< θt < q π

8

	
÷ (T − 1)

wheret = 2, . . . , T andq = 1, . . . , 8

Table 1

Initial set of features

4.1 Jω criterion-error rate correlation
To test whether theJω value is a good predictor of classification performance, these global features are used as
an input to the floating search algorithm, which produces a secondary set of 12 features shown in Table 2. The
Jω value is computed for all of the 4095 resulting subsets. Then, these feature subsets are used with a GMM
classifier [9] to obtain corresponding EER figures. The classifier uses 5 training signatures, and models users using
2 diagonal covariance matrix Gaussian components per user model. Score normalisation is performed for each user
by a cohort background model of 6 Gaussian components with diagonal covariance matrix trained from the pooled
training data of all other users.
As shown in Fig. 1(a), theJω criterion is highly correlated with classifier performanceat EER, with a Pearson
linear correlation coefficient [3] of -0.64. This means thatsignificant compute time savings can be achieved by
using this criterion instead of direct EER measure for feature selection. However, as all filter methods of feature
selection, the compute time saving comes at the expense of possibly missing the best feature subset, which would
be provided by wrapper methods.
The Fisher ratio in itself would be a poor feature selection criterion for on-line signature verification, as can be
seen on Fig. 1(b). This is likely due to the fact that high-dimensional covariance matrice have a large number
of free parameters and that global features only provide onepoint of data per signature realisation. Thus, it is
likely that covariance estimates are severely biased. Furthermore, since many global features are not normally an
unimodally distributed within their classes, a single covariance matrix may not be an adequate representation of
their distribution.

4.2 Need for forgery data
For real deployments of signature verification systems, forgery data may be difficult to collect. Therefore, we
tested whether a feature set providing large user-to-user separation (highJω) would also provide a large authentic-
to-forger separation (highJω̄). This was done by computingJω̄ in addition toJω using the same procedure as
before. Then, the Pearson linear correlation coefficient was computed and found to be0.78. This figure and the



1. T 2. avg. velocity 3. avg. velocity÷ max velocity

4. num. points with +vex velocity 5. Td 6. avg. pressure

7. variance of pressure 8. max. pressure 9. point of max. pressure

10. avg. elevation 11.S1 12. num. points with +vey velocity÷Td

Table 2

floating search results: secondary set of features
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(a) Correlation between EER andJω value (ρ = −0.64)
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Fig. 1. Assessment of predictive ability of theJω criterion

scatterplot shown in Fig. 2 suggest that user-to-user separation measureJω is a good predictor of authentic-to-
forger separation measureJω̄ for GMM classifiers, and means that verification systems may be in a developed and
optimised without the need for forgery data. It should be noted that forgery data in the MCYT database is only
“skilled” in the sense that forgers were allowed to practiceon a static image of their target, and that results may be
different where over-the-shoulder forgeries are used.
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Fig. 2. Correlation betweenJω andJω̄ cost functions (ρ = 0.78)

4.3 Error rates
Lastly, the best feature set (highestJω criterion value) found by the floating search procedure and consisting of the
12 features in Table 2 is tested in a verification task. The classifier used is the same as in the previous experiment,
and 50 users (each providing 5 training signatures) are usedfor testing, resulting in 1000 genuine signatures and
1250 forgeries being tested. As can be seen on the Detection-Error Trade-off (DET) curve of Fig. 3, the EER is
around 4.5%, a reasonable figure considering that each user is modelled using a total of 5 12-dimensional training
vectors. It is probably the case that a GMM is not the most appropriate classifier to use with such a limited amount
of training data (the parameter estimates will likely be toobiased), and nonparametric models could be used instead.

5. Conclusions
We have presented a methodology for selecting a subset of global features out of a large initial set of features. We
proposed a modification to the classical Fisher ratio and obtained higher correlation with classifier performance
for a signature verification task. Our criterion is effective for measuring the class separation ability provided by
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Fig. 3. DET curve for best global feature subset (4.4% EER on 50 users)

feature vectors. We also showed two possible ways of computing distance between classes, one in which only
authentic signatures are used, and a second in which both authentic and forgery data is used. We then showed
that the two measures where highly correlated, and postulated that the unavailability of forgery data may not be a
major drawback in signature verification system design; separation of legitimate users in feature space is a good
indication of the distance between forgers and their targets.
Further work will include exploring other separability measures such as joint mutual information, testing with
non-parametric classifiers and using a larger signature database.
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