Global feature selection for on-line signature verification
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Abstract. A large number of features can be used to represent on-line handwsigpeatures in verification
tasks. Depending on the signature database and acquisition conditimesfesdures will not help in separating
writers in the feature space so that an appropriate decision boundabgwiird to estimate. Other features will
provide good separability between legitimate system users and theirdofiges paper proposes a signature
feature selection algorithm combining a modified Fisher ratio cost functidraasub-optimal but fast search
method to explore an initial feature space of candidate global featurksg@ number of candidate feature
subsets of various sizes is evaluated, and it is shown that our modifibdr Fatio correlates highly with
experimental verification error rates. The need for forgery data irfahture selection phase of signature
verification systems development is also investigated, and we postulaigs#raib-user separation is a good
indication of user-to-forger separation.
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1. Introduction

Over the years, many features have been proposed to repsigeatures in verification tasks. We distinguish
betweerlocal features, where one feature is extracted for each sampi¢ ipdhe input domainglobal features,
where one feature is extracted for a whole signature, basatl sample points in the input domain, asegmental
features, where the signature is subdivided into segmgieélly based on velocity) and one feature is extracted
for each segment. This paper focuses on global features.

Signature verification can be considered as a two-classrpattcognition problem, where the authentic user is a
class and all her forgers are the second class. Featuréi@elexfers to the process by which descriptors (features)
extracted from the input-domain data are selected to peowidximal discrimination capability between classes.
In previous work on feature selection for signature verifarg statistical methods such as Linear Discriminant
Analysis (LDA) have been applied for segmental featureshiaio the discriminative power of each individual
feature [2]. In [5], a statistical distance measure (featwy-feature difference of means between two users scaled
by standard deviation) is used to select the best featureesulut of a 42-features and a 49-features candidate
list. In [1], a backwards search procedure starting from lbba features is used with an equal error rate (EER)
cost function to select a subset of features. Selectionadl Ifeatures based on classifier score (match distance
called dissimilarity measure) is performed in [4]. Recgrdlmix of 22 local and global features extracted from the
SVC 2004 database were extracted and ranked individuakly“ognsistency” measure, essentially a difference of
distance measure-specific means scaled by the standaedioesi[6].

For our research, we gathered a large number of global fafanore than 150 extracted from 60 papers dating
from 1983 to the present) and we use a near-optimal feataeesgearch algorithm (the floating search) along
with an improved version of the Fisher ratio as a cost fumctio order to take into account effects of correlation
between feature vector components, the cost is computedholeieature vectors instead of individual features.
Because class separability depends on the classifier imeeblest feature vector will not be the same for different
classifiers [3]. Therefore, we are narrowing the problemmltwinding the optimal feature vector with respect to
a Bayes classifier.

Our approach works as follows: a series of search stepsr{deddn Section 3.) starting from an initial set of
features is used. At each search step a cost function (Heddn Section 2.) measuring the discriminative ability
of the feature subset is applied. We then correlate costifunealue with the equal error rate (EER) of a Gaussian
mixture model (GMM) classifier for signature verificatiore($ion 4.).

2. Measuring discriminative ability of feature subsets

In order to evaluate a candidate feature vector subset atssarch step, it is necessary to define an objective
measure or cost function. The measure should be high whesedare more easily separable in feature space.
Many types of cost functions can be used for feature selgctincompassing distance measures (e.g. Euclidean
distance, Divergence, Bhattacharyya distance), infaonatontent measures (e.g. Mutual information [10]), and
error-rate measures, where the error rate of the classfieseid directly as a criterion to evaluate the current subset
(wrapper method).
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For this work, we use a modified version of the Fisher ratio essa function, which we explain below.

The Fisher ratio provides a good mathematical frameworkefgressing the idea that within-class variability
should be small, while between-class variability shoulddrge. The within-class scatter matrix is defined as
follows:

M
Sw = Z szma (1)
whereM is the number of classeg,, is the prior probability of class:, andX,,, is an estimate of the covariance
matrix. The class covariance matrix is computed as:
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wherey,, is the mean of class features. The between-class scatter matrix is defined as:

M
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whereyy is the global mean vector, computed over all classes assilo
M
Ho = Z Py pim,s (4)
From Egs. 1 and 3, one computation commonly used for thesidal Fisher ratio is:
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Thus,J will be large when class samples (signature presentataes)arrowly clustered around their class means
and class clusters are well separated. However, one protikirthis definition is that the between-class separation
is only measured with respect to the global mean. Thereifttee weighted sum of individual class distances to
the global mean (trace &) stays the samé/, will not become larger for classes that are pairwise furépart. To
correct this problem, we add an Euclidean distance #8ynepresenting the averaged two-by-two distance between
class means, to thé criterion (of which we take the root because it represenggia of squared distances):
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2.1 What definition of class should we use?

Signature verification is a unique biometric modality besgait is the only one to be systematically tested against
dedicated impostors instead of random impostors. Thudgevihimodalities such as face verification the class
definitions are clear cut (user’s face versus all other fagesignature verification we have two possibilities.

The first possibility is to consider each user as a class, @odrpute the modified Fisher ratit of equation 7
using these classes (as many classes as users). This wélireghe separability between authentic users, which is
equivalent to measuring the separation ability of a feasuteset for random impostors. We denote this definition
of our measurée/,,.

The second possibility is to define two classes for each oserauthentic class and one forgery class. In this case
the modified Fisher ratid’ is computed, for each user, with these two classes. Themdla® over all the users is
computed to produce what we call the “authentic-forgernstdanction.J.

3. Search method

With a large number of initial features, exhaustive searfcthe feature subset space becomes computationally
intractable, as an initial set &f features would result ia*” — 1 possible combinations. Therefore, we use floating
search [8], a suboptimal search strategy which affords ¢xédility of reconsidering a previously discarded feature
or to remove a selected feature. Once the floating searcheldased the initial feature set to a more tractable
dimension, optimal (exhaustive) search can be performatereduced space of potential feature subsets.

4. Experiments

The database used for the tests is a 25-users subset of th& M&abase [7], which providés;, ) coordinates,
pressure, azimuth and elevation data sampled from a Wacimmsia tablet at 100Hz. Each user has 25 authentic
signatures, and a total of 25 forgeries collected from Sed#fiit forgers. The forgers were allowed to practice
forgery as they needed and were provided with a static reptason of the signature. Preprocessing is done
by translating each signature to start at coordinéfe8), but no rescaling or rotation takes place because the



acquisition was done using an inking pen on a strict papel groviding immediate feedback and orientation
information. The 46 global features extracted for theseegrpents were selected from our list of more than 150
features for their representativity and frequent use inatigre verification litterature. They are shown in Table 1.

number of samples() signature height#) signature width {V)
H to W ratio T to W ratio avg. velocity

max velocity avg. velocity-- max velocity avg.z velocity

var. of z velocity num. pts. with positive: velocity | RMS velocity

var. of velocity pen down sampled{) time of max velocity+Tjy
time of maxx velocity ~7,; | RMS acceleration avg. acceleration
var. of acceleration avg. pressure max pressure
point of max pressure avg. azimuth avg. elevation
avg.y velocity x y velocity correlation first moment

max pressure-min pressure maxax velocity avg.x acceleration
maxy velocity avg.y acceleration var. of pressure
point max. velocity+Ty num. points with negative or y velocity ~Ty

max. acceleration num. points with positive: or y velocity Ty

tangent histogram in 8 quadrants; = card{@t (g-1g <o < qg} +(T-1)
wheret =2,...,Tandg=1,...,8

Table 1
Initial set of features

4.1 J, criterion-error rate correlation

To test whether thd,, value is a good predictor of classification performancesehglobal features are used as
an input to the floating search algorithm, which producescarsgary set of 12 features shown in Table 2. The
J,, value is computed for all of the 4095 resulting subsets. Thieese feature subsets are used with a GMM
classifier [9] to obtain corresponding EER figures. The di@ssises 5 training signatures, and models users using
2 diagonal covariance matrix Gaussian components per usgglnscore normalisation is performed for each user
by a cohort background model of 6 Gaussian components watiodial covariance matrix trained from the pooled
training data of all other users.

As shown in Fig. 1(a), thg,, criterion is highly correlated with classifier performarateEER, with a Pearson
linear correlation coefficient [3] of -0.64. This means thanificant compute time savings can be achieved by
using this criterion instead of direct EER measure for femselection. However, as all filter methods of feature
selection, the compute time saving comes at the expensessiighp missing the best feature subset, which would
be provided by wrapper methods.

The Fisher ratio in itself would be a poor feature selectiotedon for on-line signature verification, as can be
seen on Fig. 1(b). This is likely due to the fact that high-elisional covariance matrice have a large number
of free parameters and that global features only providepmiet of data per signature realisation. Thus, it is
likely that covariance estimates are severely biasedhErunrtore, since many global features are not normally an
unimodally distributed within their classes, a single a@@ce matrix may not be an adequate representation of
their distribution.

4.2 Need for forgery data

For real deployments of signature verification systemgédor data may be difficult to collect. Therefore, we
tested whether a feature set providing large user-to-egration (high/,,) would also provide a large authentic-
to-forger separation (high;). This was done by computing; in addition to.J,, using the same procedure as
before. Then, the Pearson linear correlation coefficierst @anputed and found to I8e78. This figure and the



1.T 2. avg. velocity | 3. avg. velocity= max velocity

4. num. points with +ve: velocity | 5.7y 6. avg. pressure

7. variance of pressure 8. max. pressure 9. point of max. pressure

10. avg. elevation 11.5: 12. num. points with +ve velocity ~T},

Table 2
floating search results: secondary set of features
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Fig. 1. Assessment of predictive ability of tHg criterion

scatterplot shown in Fig. 2 suggest that user-to-user agparmeasure/,, is a good predictor of authentic-to-
forger separation measwig for GMM classifiers, and means that verification systems neaya developed and
optimised without the need for forgery data. It should beeddbhat forgery data in the MCYT database is only
“skilled” in the sense that forgers were allowed to practinea static image of their target, and that results may be
different where over-the-shoulder forgeries are used.
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Fig. 2. Correlation betwees,, andJ; cost functions 4 = 0.78)

4.3 Error rates

Lastly, the best feature set (highgst criterion value) found by the floating search procedure amsisting of the

12 features in Table 2 is tested in a verification task. Thesifi@r used is the same as in the previous experiment,
and 50 users (each providing 5 training signatures) are fasedsting, resulting in 1000 genuine signatures and
1250 forgeries being tested. As can be seen on the Detdetion-Trade-off (DET) curve of Fig. 3, the EER is
around 4.5%, a reasonable figure considering that eachauserdelled using a total of 5 12-dimensional training
vectors. Itis probably the case that a GMM is not the most@mate classifier to use with such a limited amount
of training data (the parameter estimates will likely beh@sed), and nonparametric models could be used instead.

5. Conclusions

We have presented a methodology for selecting a subsetlodidieatures out of a large initial set of features. We
proposed a modification to the classical Fisher ratio andiobtl higher correlation with classifier performance
for a signature verification task. Our criterion is effeetfor measuring the class separation ability provided by
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Fig. 3. DET curve for best global feature subset (4.4% EER on Bfsys

feature vectors. We also showed two possible ways of comgutistance between classes, one in which only
authentic signatures are used, and a second in which bdtlergid and forgery data is used. We then showed
that the two measures where highly correlated, and postutagt the unavailability of forgery data may not be a
major drawback in signature verification system designasspn of legitimate users in feature space is a good
indication of the distance between forgers and their target

Further work will include exploring other separability nseaes such as joint mutual information, testing with

non-parametric classifiers and using a larger signatusbeae.
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