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Abstract—Qualitative and quantitative description of functional
connectivity graphs using graph attributes is of great interest to
neuroscience, and has led to remarkable insights in the field. However,
the statistical techniques used have generally been limited to whole-
group, post-hoc studies. In this paper, we propose instead a novel
approach to perform predictive inference on single subjects. It is
based on a lossy embedding of connectivity graphs into a vector space
using graph and vertex attributes, followed by the use of statistical
machine learning to build a predictive model. The feature space
proposed is easily interpretable for neuroscientists, and we illustrate
the technique by revealing resting-state difference between young and
elderly subjects.
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I. INTRODUCTION

In pattern recognition literature, the graph classification task is
generally approached through graph matching followed by clas-
sification (typically using k-NN) based on a matching cost (see
e.g. [1]). When graphs are restricted to have a fixed-cardinality
vertex sequence, however, the matching step is unnecessary and
classification becomes suboptimal [2]. A recent class of approaches
is to represent the graph in a vector space (graph embedding) [3],
[4] , and to use statistical machine learning tools to perform clas-
sification. Thus, the design effort is spent on devising embeddings
that ideally provide good discrimination between classes.
Here we propose a new embedding technique based on graph and

vertex attributes. This is of interest because these attributes have
been the focus of much attention in recent neuroscience research
(see e.g. [5], [6]), and provide interpretable results, but have gen-
erally been applied in a post-hoc setting. The proposed embedding
technique is lossy in the sense that the original graph cannot be
reconstructed from the vector-space representation. However, our
goal is to obtain a discriminative representation easy to interpret,
rather than a good reconstruction. We illustrate the technique on a
young-versus-old classification task.

II. REPRESENTING CONNECTIVITY GRAPHS IN VECTOR SPACE

A. Connectivity graph computation

After motion correction and coregistration to an MNI template
(SPM2 1), subjects displaying excessive head movement (in excess
of 3 mm translation, or 0.38 rotation, in x, y, or z dimensions) are
discarded. No spatial smoothing is used, and the data undergoes
regional parcellation into 45 bilateral regions (total 90) using the
anatomically labeled template image validated by Tzourio-Mazoyer
et al. [7].

1available at http://www.fil.ion.ucl.ac.uk

The adjacency matrix for the functional connectivity graph in
each subject is then constructed in the following manner [5]:
1) Regional mean time series are estimated by averaging the
fMRI time series over all voxels in each region.

2) The confounding signals from the movement parameters are
regressed out from the regional time series.

3) The pairwise inter-regional correlations between wavelet
coefficients corresponding to 0.06-0.11 Hz are computed to
produce a correlation matrix among regions. By removing the
diagonal, this forms the adjacency matrix of an undirected,
weighted graph.

4) The connectivity graphs are then explored by retaining the
absolute correlations of statistical significance using multiple
hypothesis test at 5%, and those greater than a given threshold
chosen such that every graph has the same number of
connections are retained.

This procedures yields a labeled simple graph g = (V,E, α, β),
which is a 4-tuple consisting of a set of vertices V , a set of edges
E, and labeling functions α and β assigning respectively vertex
and edge labels. In the present case the cardinality of the vertex
set is fixed to the number of regions (|V | = R) for all graphs, the
vertex labeling function α assigns unique and corresponding node
labels for all graphs because of the atlasing procedure, and β is
a scalar function assigning correlation values as edge labels. For
instance β(1, 2) yields the correlation coefficient between regions
1 and 2.

B. Graph and vertex attributes

As the graphs of interest have fixed-cardinality vertex sequences
due to the atlasing procedure, each graph g is uniquely defined
by its adjacency matrix A and vice versa, because the ordering
of vertices is not arbitrary. Hence, with the vertex problem corre-
spondance solved a priori, this in turn entails that an isomorphism
between graphs of this class only needs satisfiy equality of edges
and edge labels (a problem subsumed by isomorphism of graphs
with unique node labels [8]).
Thus, it is relatively easy to use or propose several vertex

attributes that obey the definition of vertex invariants, namely, that
return the same value for isomorphic graphs. In this paper, we used
five basic vertex attributes already defined and used in [9], [5], [6].

• Strength : The pairwise correlations are averaged for each
region in order to quantify the correlation weight for each
region i, 1 ≤ i ≤ R :

S(i) =
1

R− 1

R∑

k=1,k �=i

β(i, k)
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• Diversity : The variance of the pairwise correlations for each
regions

Div(i) =
1

R− 1

R∑

k=1,k �=i

(β(i, k)− Si)
2

Strength and diversity are computed on the adjacency matrix
for the complete graph. The remaining three properties are
computed on the thresholded adjacency matrix.

• Degree : The number of edges connected to each region i,
1 ≤ i ≤ R :

D(i) =
R∑

k=1,k �=i

Aik

• Global efficiency : The shortest path between pairs of regions
i and k, denoted lik. High global efficiency corresponds to
regions that are highly connected to other distant regions.

Eg(i) =
1

R− 1

R∑

k=1,k �=i

1

lik

• Local efficiency : Based on the connections between neigh-
bours of a selected region. Let us denote Gi the subgraph of
vertex i composed of the direct neighbours of i. High local
efficiency corresponds to the ability to easily compensate for
the loss of a region.

El(i) =
1

RGi − 1

R∑

k,j∈Gi

1

ljk

From these vertex attributes, graph attributes can be computed
by averaging the vertex attributes over all vertices of the graph.
Since the thresholding procedure is somewhat arbitrary, we also

sparsify the graph with several different thresholds, compute graph
and vertex attributes, and average them across thresholds. The range
of thresholds was chosen in order to cover the small-world regime
[10]. Here, we define the range from 100 to 2000 edges with a step
of 100 which corresponds to 2.5% and 50% of the total number
of possible edges. We denote this as the “range” technique later in
the paper.

C. Lossy embedding with graph and vertex attributes

Formally, a graph attribute is the result of the computation of
a function f : g �→ R. A vertex attribute over a graph with R
vertices can be seen as a function fv : g �→ R

R. Thus, given a set
of functions over graphs F = {f1, . . . , fn1} and a set of functions
over vertices Fv = {fv1 , . . . , fvn2

}, a graph can be represented
in vector spaces R|F | and R

R×|Fv|. This representation forms an
embedding, which is lossy because the original adjacency matrix
representing the graph cannot be reconstructed from the vector-
space representation.
We note that this approach is different from [11], which applies

to directed acyclic graphs, and relies on partial eigenspectrum sums
in subgraphs to achieve vector-space embedding.

III. EXPERIMENTS

A. Dataset

1) Subjects: Thirty healthy human volunteers were recruited in
two age groups: 17 younger participants aged 18-33 years, mean
age = 24.3 years, nine male; and 13 older participants aged 62-
76 years, mean age = 67.3 years, six male. Two young and two
old subjects were excluded due to excessive motion, resulting in a

sample of 15 young and 11 old subjects. Exclusion criteria included
a history of neurological or psychiatric disorder, current treatment
with vasoactive or psychotropic medication, or any contraindica-
tions to MRI or study drug. Prior to functional MRI scanning, each
participant also had an electrocardiogram and a structural MRI scan
reviewed as normal by a physician. All participants gave wrtten
informed consent. The study was approved by the Addenbrooke’s
National Health Service Trust Local Research Ethics Committee,
Cambridge, UK. Two different analyses of data acquired on this
sample have been previously reported [10], [12].
2) fMRI acquisition: Each participant was scanned lying quietly

at rest with eyes closed for 9 min, 37.5s. Gradient-echo echoplanar
imaging (EPI) data depicting BOLD contrast were acquired using a
Medspec S300 3 T scanner (Bruker Medical) in the Wolfson Brain
Imaging Centre (Cambridge, UK). We acquired 525 volumes with
the following parameters: number of slices, 21 (interleaved); slice
thickness, 4 mm; interslice gap, 1 mm; matrix size, 64 × 64; flip
angle, 90◦; repetition time (TR), 1100 ms; echo time, 27.5 ms; in-
plane resolution, 3.125 mm. The first seven volumes were discarded
to allow for T1 saturation effects, leaving 518 volumes available
for analysis of resting state connectivity in each subject.

B. Classification tasks

We perform young-versus-old classification experiments in a
leave-one-subject-out crossvalidation setting. The goal is to see
whether a particular feature, or combination of features, is dis-
criminative in this respect. To lower the risk of falsely concluding
to an absence of discriminative power, we test several classifiers,
both generative and discriminative. The classifiers used are Naı̈ve
Bayes with kernel densities (NBk), SVMs with linear and 2nd
order normalised polynomial kernels (SVMl and SVMp, cost 10),
a radial basis function network (RBF , 3 clusters), a multi-layer
perceptron (MLP ), and trees(C4.5 (C4.5), functional tree (FT )
with minimum 3 items per branch, random forest (RF ) with 401
trees and 2 features per tree). All classifiers are implemented in
Weka [13] and use default settings except where mentioned. The
RF classifier was provided by Abhishek Jaiantilal2.
1) Graph attributes: The first set of experiments is based on

using whole-brain attributes, global and local efficiency. For each
parcellation scale, these are extracted and made into two Eg, El ∈
R

1×1 feature vectors, and one joint feature vector (Eg, El)
T ∈

R
2×1 for each subject. Other graph properties could be combined in

the same way. The results are reported in Table I. We also examine
the between-group difference in means (or medians) using a single-
factor ANOVA (or Kruskall-Wallis test), selecting the hypothesis
test according to Gaussianity of the data as established by a Jarque-
Bera test at p < 0.05.
For global efficiency, 2 classifiers fail at achieving above-chance

accuracy in both classes, both for attributes computed for 400
edges and attributes computed over a range of edges. For local
efficiency, only the polynomial SVM fails. This indicates that both
attributes are good predictors of age group, because a variety
of optimisation techniques and decision boundary forms are able
to predict reasonably well. Using the range technique leads to
marked improvements in the discriminative power afforded by local
efficiency.

2https://code.google.com/p/randomforest-matlab/
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Table I
LEAVE-ONE-OUT CLASSIFICATION ACCURACIES (IN PERCENTAGE) ON
GRAPH ATTRIBUTESEg AND El . Py,o INDICATES ACCURACY FOR
YOUNG AND OLD RESPECTIVELY,Pb IS THE BALANCED ACCURACY.

YELLOW INDICATES THE BEST RESULTS.

|E| Class. Eg El (Eg,El)
Py Po Pb Py Po Pb Py Po Pb

400

NBk 87 64 75 80 64 72 80 64 72
SV Ml 87 64 75 80 73 76 80 64 72
SV Mp 87 0 43 100 0 50 93 9 51
RBF 80 64 72 67 55 61 80 64 72
MLP 87 55 71 67 64 65 73 64 68
C4.5 87 45 66 60 82 71 60 82 71
FT 87 64 75 80 64 72 73 64 68
RF 73 64 68 60 55 57 60 55 57

p-value 0.001 (F = 14.01) <0.003 (χ2 = 9.22) n/a

range

NBk 87 55 71 87 82 84 80 82 81
SV Ml 80 73 76 87 91 89 80 91 85
SV Mp 100 0 50 67 0 33 100 18 59
RBF 80 45 63 93 64 78 80 64 72
MLP 93 55 74 87 82 84 87 82 84
C4.5 93 64 78 87 82 84 80 55 67
FT 80 73 76 87 91 89 80 82 81
RF 80 55 67 80 73 76 80 55 67

p-value <0.001 (F = 14.26) <0.001(χ2 = 11.21) n/a

The best results are obtained using local efficiency (range
technique) as a feature together with a linear SVM or functional
tree classifier. It is in fact quite remarkable that a single scalar is
able to distinguish so well between old and young subjects. This
is also hinted at by the low p-values.
The combination of global and local efficiency generally fails to

improve predictive ability over the best 1D feature, or even worsens
accuracy, presumably because the two are strongly correlated (ρ =
0.83). It would be of interest to include other more orthogonal
graph attributes.
2) Vertex attributes: The second set of experiments attempts to

classify graphs based on vectors of vertex attributes, for each sub-
ject RR×1 vectors. As an example, a composite vector (Eg,El)

T

is also extracted by concatenating local attribute vectors into a
R

2R×1 vector per subject. Several vertex attribute vectors could be
combined in this way. Table II shows the results.

Table II
LEAVE-ONE-OUT CLASSIFICATION ACCURACIES (IN PERCENTAGE) ON
VERTEX ATTRIBUTE VECTORS. Pb IS THE BALANCED ACCURACY.⊕,
RESP.�, INDICATES AN ACCURACY GAIN, RESP. ACCURACY LOSS,
OVER THE BEST OF Eg OR El BY COMBINING THEM. YELLOW
INDICATES THE BEST RESULTS FOR EACH VERTEX ATTRIBUTE.

|E| Class. Eg El D Str Div (Eg,El)
Pb Pb

400

NBk 66 54 78 54 81 58 �
SV Ml 73 66 76 66 72 75 ⊕
SV Mp 59 72 65 71 73 74 ⊕
RBF 43 44 57 50 67 55 ⊕
MLP 73 62 63 66 72 75 ⊕
C4.5 76 36 89 80 68 76
FT 68 52 72 67 71 72 ⊕
RF 74 51 66 52 72 68 �

range

NBk 62 76 56 54 81 72 �
SV Ml 73 74 68 66 72 76 ⊕
SV Mp 64 80 64 71 73 65 �
RBF 46 53 44 50 67 44 �
MLP 73 71 70 66 72 76 ⊕
C4.5 61 54 68 80 68 61
FT 72 71 66 67 71 81 ⊕
RF 69 59 65 57 67 77 ⊕

The first notable results is that all 5 vertex properties yield
balanced accuracies above chance in general, and that they can
reach around 80% accuracy given the proper classifier. Overall,
the peaks of accuracy are reached by the NB or C4.5 classifiers.
3) Direct embedding: For comparison, we perform the same

classification task using direct connection label sequence embed-

ding [14], whereby the upper triangular part of the unthresholded
adjacency matrix is vectorised and used directly as a feature vector.
Summarising the results, the best performance is obtained by a
linear SVM, resulting in Py = 87%, Po = 64%, Pb = 76%.
Embedding the thresholded 400-edges weighted graphs in the
same way, the best result is obtained by a C4.5 tree, at Py =
93%, Po = 73%, Pb = 83% This is below the best results that
can be obtained by using vertex or graph attributes on this task,
hinting that it can indeed be beneficial to extract graph attributes
to better represent structural relationships in graphs. These may be
difficult or impossible to learn using classical machine learning on a
vector-space representation, where the relational information is lost
or captured to a low degree only. The relative small dimensionality
of the feature space generated by graph and vertex attributes further
underlines the potential of using a representation based on these
attributes.

C. Regional importances

Based on the classifiers trained on vertex attributes and their
classification performance, we can compute a mapping in brain
space to show which graph regions are (jointly) more discriminative
between the two classes. As usual, in this respect two main types
of classifiers exist: those that use a sparse discriminant function (in
our case, trees), where not all features are selected and/or assigned
a weight, and those that use all features in the discriminant function
(SVM (trained with L2 loss), MLP, RBF), yielding a “dense” map.
For “sparse” classifiers that do not assign a weight to features, the
number of times a feature is picked can serve as a proxy of its
importance. For “dense” maps derived from linear classifiers, the
(normalised) weight attached to a feature can be used. We note that
the C4.5 classifier indeed does pick very few regions to achieve
good discrimination (as little as 3 for theD attribute, concentrating
on orbito-frontal regions and the amygdala, which is consistent with
previous work on the dataset), and yields shallow trees.
Figures 1 and 2 present dense results for the linear SVM

classifier on global efficiency and joint local and global efficiency.
For global efficiency, we note that the most discriminative regions
are located ventrally. The lingual gyrus, not found in previous
analyses, is thought to show decreased activation with age in
memory tasks [15], a plausible finding during resting state. This
would entail that the decrease in global efficiency is due to the
decrease in activation.
The analysis in terms of combined global and local efficiency,

where the importance of a region is given as the mean importance
of Eg and El in that region, shows again that ventral areas (with
the exception of the inferior frontal triangularis cortex) are more
discriminative between young and old subjects, with limbic and
frontal regions having more marked differences.

IV. DISCUSSION

Comparing our results (Section III-C) with those obtained
previously on the same dataset [10] we find numerous areas
of agreement - the importance of the orbitofrontal regions, the
importance of the amygdalae and the parahippocampal formation
are also underlined in the present study under a predictive setting.
These area are also well-known targets of age-related changes,
thus it should come as no surprise that some of their connectivity
properties show distinct differences.
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Figure 1. Importance of brain regions in discrimination between old and
young in terms of global efficiency (linear SVM classifier). Larger spheres
represent more importance in the discriminative function.

Figure 2. Importance of brain regions in discrimination between old
and young in terms of combined global and local efficiency (linear SVM
classifier).

However, care must be used when interpreting these “dense”
maps: the regions are jointly discriminative, but not necessarily
when taken in isolation, as is the case for univariate tests. Never-
theless, the good classification performance of classifiers using a
very sparse subset of regions suggests that around 10-15% of brain
regions carry the essential discriminative information.
An intriguing possibility for future work is to combine graph and

vertex attributes, and to investigate more fully feature generation
to avoid redundant features.
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and EB would like to thank the British council and the French Foreign
Affairs Ministry for their support through the Alliance program.

REFERENCES

[1] K. Riesen and H. Bunke, “Approximate graph edit distance
computation by means of bipartite graph matching,” Image and
Vision Computing, vol. 27, pp. 950–959, 2009.

[2] J. Richiardi, D. Van De Ville, K. Riesen, and H. Bunke, “Vector
space embedding of undirected graphs with fixed-cardinality
vertex sequences for classification,” in Proc. 20th Int. Conf. on
Pattern Recognition (ICPR), 2010.

[3] R. Wilson, E. Hancock, and B. Luo, “Pattern vectors from
algebraic graph theory,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 27, no. 7, pp. 1112–1124, 2005.

[4] K. Riesen and H. Bunke, “Graph classification by means of
lipschitz embedding,” IEEE Trans. on Man, Systems, and Cy-
bernetics, part B, vol. 39, no. 6, pp. 1472–1483, 2009.

[5] S. Achard, R. Salvador, B. Whitcher, J. Suckling, and E. Bull-
more, “A resilient, low-frequency, small-world human brain func-
tional network with highly connected association cortical hubs,”
Journal of Neuroscience, vol. 26, no. 1, pp. 63–72, Jan. 2006.

[6] M. Lynall, D. S. Bassett, R. Kerwin, P. J. McKenna, M. Kitzbich-
ler, U. Muller, and E. Bullmore, “Functional connectivity and
brain networks in schizophrenia.” J Neurosci, vol. 30, no. 28, pp.
9477–9487, Jul 2010.

[7] N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou, F. Crivello,
O. Etard, N. Delcroix, B. Mazoyer, and M. Joliot, “Automated
anatomical labeling of activations in spm using a macroscopic
anatomical parcellation of the mni mri single-subject brain,”
NeuroImage, vol. 15, pp. 273–289, 2002.

[8] P. Dickinson, H. Bunke, A. Dadej, and M. Kraetzl, “Matching
graphs with unique node labels,” Pattern Analysis & Applications,
vol. 7, no. 3, pp. 243–254, Sep. 2004. [Online]. Available:
http://dx.doi.org/10.1007/BF02683991

[9] V. Latora and M. Marchiori, “Economic small-world behavior in
weighted networks,” European Physical Journal B, vol. 32, pp.
249–263, 2003.

[10] S. Achard and E. Bullmore, “Efficiency and cost of economical
human brain functional networks,” PLoS Computational Biology,
vol. 3, p. e17, 2007.

[11] A. Shokoufandeh and S. Dickinson, “A unified framework for
indexing and matching hierarchical shape structures,” in Proc. 4th
Int. Workshop on Visual Form (IWVF), C. Arcelli, L. Cordella,
and G. di Baja, Eds., vol. 2059, Capri, Italy, May 2001, pp. 67–84.

[12] D. Meunier, S. Achard, A. Morcom, and E. Bullmore, “Age-
related changes in modular organization of human brain func-
tional networks.” Neuroimage, vol. 44, no. 3, pp. 715–23, 2009.

[13] I. H. Witten and E. Frank, Data Mining: Practical machine
learning tools and techniques, 2nd ed. Morgan Kaufman, 2005.

[14] J. Richiardi, H. Eryilmaz, S. Schwartz, P. Vuilleumier, and D. Van
De Ville, “Decoding brain states from fMRI connectivity graphs,”
NeuroImage (Special Issue on Multivariate Decoding and Brain
Reading), 2010, (in press).

[15] W. E. Mencl, K. R. Pugh, S. E. Shaywitz, B. A. Shaywitz, R. K.
Fulbright, R. T. Constable, P. Skudlarski, L. Katz, K. E. Mar-
chione, C. Lacadie, and J. C. Gore, “Network analysis of brain
activations in working memory: Behavior and age relationships,”
Microscopy Research and Techique, vol. 51, no. 1, pp. 64–74,
2000.

4848


