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Decision trees deserve more attention

Scopus june 201 3:

(mapping OR "brain decoding” OR "brain reading" OR classification OR
MVPA OR "multi-voxel pattern analysis") AND (neuroimaging OR "brain
imaging” OR fMRI OR MRI or "magnetic resonance imaging")

+ ("support vector machine” OR "SVM") = 657 docs

(1282 if adding EEG OR electroencephalography OR MEG OR magnetoencephalography)

+ ("random forest” OR "decision tree") = 71 docs
(199 if adding EEG OR electroencephalography OR MEG OR magnetoencephalography)

Roughly speaking, more used at MICCAI
(segmentation, geometry extraction, image
reconstruction, skull stripping...) than at HBM
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Information mapping relates model input to output

In supervised learning for classification, we
seek a function mapping voxels to class labels

f(x):R” =y
y=1{0,1}, x e R” S ={(xp,yn)}, n=1,...,N

As neuroimagers, if some voxels in X contain
information about y, the function should
reflect it, and we are interested in mapping it

f(x) = sgn(W)x + b)

tells us about relative
discriminative importance

[Mourao-Miranda et al., Neurolmage, 2005]



Mutual information measures uncertainty reduction

We can also explicitly measure the amount of
information X and y share using mutual
information.

I(V;X)=H(Y) - HY|X)

1
= Y P(y)log HY|X)=) P(y,x log
2 PWles s =2 P P
h.igh if classe.s are balanced average uncertalnty remaining about
(high uncertainty about class class label if we know the voxel intensity

membership)

P(y)P(x)

average reduction in uncertainty about
class label if we know voxel intensity

= Z P(y, x)log Ply, z)
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Growing trees recursively reduces entropy

Decision trees seek to partition voxel space
by intensity values to decrease uncertainty
about class label

This leaves a few questions... How to measure goodness of
splits? How to choose voxels and where to cut ? When to

stop growing? >rpart::rpart

>>stats::classregtree
>>>gsklearn: :tree



Split goodness can be measured

Entropy impurity: H(S) = > P(y)log ng)

Gini impurity: G(S)= Y P(u)P(y))

[Hastie et al., 2001]

Information Gain (decrease in impurity)'

Al(S;x,7) = Z‘\S\

1=L,R



Information gain helps choose the best split
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Stopping and pruning matter

We can stop growing the tree
When the info gain is small

When the number of points in a leaf is small (relative or
absolute) - dense regions of voxel space will be split more

When (nested) CV error does not improve any more

... but stopping criteria are hard to set

We can grow fully and then prune

Merge leaves where miminal impurity increase ensues
We can leave unpruned

These choices generally matter more than split
goodness criterion (see CART vs C4.5)



Trees relate to other models

We can view trees as kernels: build a feature space
mapping with indicator functions

B(x) = (1,(x)...15(x)7T

Then ky(x,x’) = &(x)T ®(x') is a positive kernel (only = | if x and X’
in same leaf). Can also do ‘soft’ version

We can also view trees as encoding conditional
probability distributions, e.g. represented by
Bayesian Networks:

X1 X, Xp
—_
I %
o
100 380360
P(fCl,--.,xD,y) :P(xl)P(ajD)P(yklfl,,ZED) Voel 1 % w20 " Voxel2

Kernel view: [Geurts et al., 2006] 12 BN view: [Richiardi, 2007], others



Trees are rule-based classifiers
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Many trees are more complex

Multivariate trees query >| voxels per node

Splits don’t have to be axis-parallel (can be oblique)

Model trees use MV regression in leaves

Functional Trees can use several voxels either
at nodes or leaves

At each node, use Al to split on either a voxel x, or a
logistic regression estimate of class probability P(y)

Multivariate nodes (FT-inner) reduce bias

Multivariate leaves (FT-leaves) reduces variance

Functional trees: [Gama, 2004] |4



Single trees vs SVMs

SVM Tree
Interpretability + +
Irrelevant voxels +- +
Input scaling - +
Speed + (linear) +
Generalisation error ++ -
Information mapping +- _

[Kuncheva&Rodriguez 2010]
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Single trees tend to have high variance

The bias=variance tradeoff

— -
applies as usual:
We can decrease prediction ' PO, P Nl
error arbitrarily on a given
dataset, thus yielding low bias. :
/
. . /B ) :\ | ' oa
However, this systematically | s G ok i & & i
comes at a price in variance: e ) fe =t ge
the parameters of f can change a i) e St R
o o o o \\ | \\ / !
lot if the training set varies. I S I C ‘,' g
. ¢ ! // I
Single trees are not ‘stable’ - they 8 L, L] =
tend to reduce bias by increasing s S
variance B s~ [ i
- : :
high Variance low

|7 [Duda et al, 2001]



Ensembling exploits diversity

Train set of classifiers, combine predictions, get
reduced ensemble variance and/or bias

Ground truth labels
wvigua
v
O : -
i E ‘ i- - ﬁ
60 70 80 90

Tree diversity has multiple sources

100

"-—'I.-.'._ = e

-4 -""I- '.'Z' T, -

—
100

Training set variability/resampling, random
projection, choice of cut point (, pruning strategy...)

|18



Bagging classifiers generates diversity

Bagging = Boostrap aggregating

|. Resample with replacement B times from training
dataset S,yielding {Sy}, b=1,...,B

2.Train B base classifiers {/v}
3. Get B predictions F = {fi(x),..., fg(x)}
4. Combine by majority vote f(x) = Mo(F)
If the base classifiers have high variance,

accuracy tends to improve with bagging since
this generates diversity

Good news for trees!

>::sample
| >>stats::ClassificationBaggedEnsemble
[Breiman, 1996] 19 >>>sklearn: :ensemble
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The random forest bags trees

RF combines several diversity-producing

methods
|. Generate B bootstrap replicates T e
2. At each node, randomly select a few
voxels. Typically K = |logoD + 1| or VD],
Since K << D, randomisation is high.

x 10°

3. No pruning

With a ‘large enough’ number of .|

. " *‘;. 'i:,- = §
trees, RFs typically performs well ﬁnf% g
with no tuning on many datasets =~ EEEEE S

>adabag: :bagging
o >>stats: :TreeBagger, PRoONTo::machine RT bin
Random projection: [Ho, 1998] 21 >>>sklearn: :RandomForestClassifier



can be seen as probabilistic models

The leaf of each tree b can be seen as a
posterior (multinomial distribution) pb(y|X)

Ensemble probability: : %
R

Voxel 1 400

Voxel 2

More trees = smoother posterior = less over-confidence

22



Percent Classification
(10-fold Cross Validation)

RF works for fMRI classification (1)

Data: event related fMRI, belief vs disbelief in
statements, |14 subjects

Features: ICA timecourse value at button
press

100

©
o,

90
85 |
80
75
70

65

- Naive Bayes

— SVM

- Decision Tree

w—— Adaboost
Random Forest

[Douglas et al. 2011]

Number of ICs



RF works for multimodal classification

Data: 14 HC young, |13 AD old, 14 HC old.Visual stimulation +
keypress. fMRI.

Features: fMRI| GLM activation-related (n suprathreshold
voxels, peak z-score,...), RT, demographics... + feature selection

Classifiers: RF + variants of split criterion. Group classification.

81%
81%

30.5%

80% 80%
80%
80% o
97-99% acc
£ 78%
78%
78%
77%
17%

Classical RF RF with ReliefF RF withme RF with wv

[Tripoliti et al. 2011]

activation features only + other features
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RF really works for multimodal classification

Data: ADNI, 37 AD, 75 MCI, 35 HC. MRI, FDG-PET, CSF measures, | SNP

Features: RF as kernel + MDS

Genetic

CSF MRI FDG-PET Genetic Combined embedding Concatenated features
AD/HC Acc. (%) 76.1(08) 825(0.7) 864(07) 726(09) 89.0 (0.7) 86.2 (0.7)
Bacc. (%) 763(1.3) 821(14) 865(12) 727(1.3) 890 (1.2) 87.1 (1.1)
Sens. (%) 728(1.3) 886(1.2) 858(12) 713(1.3) 879 (1.2) 85.1 (1.4)
Spec. (%) 798(14) 756(15) 871(13) 741(14) 90.0 (1.1) 86.1 (1.3)
k 13 22 9 2 18 -
MQ/HC Acc. (%) 61.7(08) 67.3(1.0) 535(07) 738(0.5) 746 (0.8) 66.3 (0.8)
Bacc. (%) 61.7(13) 69.1(14) 602(1.2) 60.7(0.9) 72.7 (0.8) 65.3 (1.1)
Sens. (%) 616(1.1) 643(1.3) 423(11) 947(0.5) 715 (1.0) 68.5 (1.5)
Spec. (%) 618(15) 739(14) 780(13) 266(1.2) 679 (1.7) 66.9 (1.3)
k 25 47 35 2 20 -
pMCI/sMA  Acc. (%) 521(1.0) 584(1.0) 530(1.0) 435(0.9) 58.0 (0.9) 53.0 (1.1)
Bacc. (%) 527(1.7) 58.3 (1.7) 528 (1.7) 412(24) 579 (1.7) 573 (1.9)
Sens. (%) 57.9(1.6) 569(16) 506(1.8) 274(2.0) 57.1 (1.8) 496 (1.4)
Spec. (%) 475(1.7) 59.7(1.8) 549(16) 550(2.7) 58.7 (1.5) 535 (1.7)
k 21 38 35 1 29 -
[Gray et al 2013] 25
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Extremely Randomised [rees increase diversity

Tree variance is due in large part to cutpoint
choice.VWe can generate even more diversity
with Extra-trees

Select both K voxels and cutpoints at random, pick best*.

Stop growing when leaves are small

When K=1, called totally randomized trees

+ Accuracy and variance reduction

competitive with and sometimes better than
RFE faster than RF

Extra-trees: [Geurts et al., 2006] >extraTrees: :extraTrees

*Dietterich 1998 - the opposite: select top-K best >>PRONTo: :machine RT_bin

splits, then pick at random 27 >>>sklearn: :ExtraTreesClassifier



Rotation forests do subspace PCA

We can also generate random rotations of

the data to add diversity. For each tree:

|. Project training data X into M random non-overlapping
subspaces, each of size K

2. For each subspace: choose a subset of classes, draw
/5% bootstrap, do PCA

15 . J 15

[Rodriguez et al. 2006]

=2 -1 0 1 2 =2 -1 0 1 2 2 -1 0 1 2

3. Rearrange PCs into a block-diag matrix R and project
whole training set to XR.

4 Train the tree

>Weka via rJdava
>>Weka via writeARFF or Java
28 >>>7



RotFor works for fMRI

Data: Haxby (8 classes, 90 points per class,

43K voxels)

Tests: feature selection, ensembles vs SVM

voxel set size (5-1000)

RF
(1000)

feature selection method

RotFor

[Kuncheva&Rodriguez 2010]

P

29
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Ensemble of FT's may improve accuracy

PCA-derived features are multivariate in the original
space, so in fact RotFor does axis-parallel (univariate)

cuts on MV data...

We can also try slightly more stable MV trees instead
of univariate trees (trade diversity for accuracy)

On 62 UCI low-dimensional datasets, it seems that Bagging + F1T-
leaves works about the same as RotFor + univariate tree* . All other

ensembles of univariate trees perform worse...

On high-dimensional fMRI connectivity data™*, and low-dimensional
graph/vertex attribute representations of fMRI connectivity™*, bags

of FT's work quite well

*[Rodriguez et al, 2010] 30 **[Richiardi et al, 2011a] ***[Richiardi et al, 2011b]



Trees ensembles vs SVMs

SVM Tree ensembles
Interpretability + +.-
Irrelevant voxels +- +
Input scaling - +
Speed + (linear) + (parallel)
Generalisation error ++ ++
Information Mapping +- ++ (see later)

31
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More trees is generally better

For many tree ensembles, more trees (L) lead
to more decrease in variance

Typically use several hundreds to reach plateau (Langs: 40K)
Large L “better approximates infinity’”’ than small L

For RF, the out-of-bag error estimate’s bias decreases a lot
with increasing trees - bootstrapping uses ~2/3 of data for
each tree, more trees leads to better OOB estimate

This also gives a much smoother posterior distribution

For multivariate trees, use fewer trees

|0-30 works well empirically on very different datasets

33



Projection dimension depends on distribution of informativeness

Low-dim results

The optimal projection dimension, K,
depends on the presence of irrelevant voxels

A
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>

voxel index
many useful voxels
- use small K

C
T
Q)
ke,
S

—

voxel index

information concentrated
in few voxels - use large K

see e.g. [Geurts et al. 2006] for details 34
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Tree ensembles directly provide information maps

The split criterion and related measures are
natural indicators of the ‘usefulness’ of voxels
in the discrimination task

But they are unsigned

They are computed at each node of the
tree, SO we can aggregate them over trees to
get stable estimates

Different ensembles provide different
information maps, and we can use other data
than split criteria to map

36



Information mapping: RF/Gini importance

Gl of a voxel: infoGain (compute with Gini
impurity) for this voxel, averaged over all
trees in ensemble

1: Animals 2: Bodies ¢ 5:Scenes

5 J‘ .
-~ » J
J *\(‘:\‘} a4

3: Faces /- Trees

[Langs et al., 2011]




Information mapplng RF/Gl/var

voxel index



Informatlon Mapplng L, SVM

22222
xxxxxxx



Information mapping - Regional Gl

Data;: ADNII, 37 AD, 75 MCI, 35 HC. MR|,
FDG-PET, CSF measures, | SNP

AD/HC MCI/HC pMCIl/sMCI

[Gray et al 2013] 40



Information mapping: RF/Variable importance

VI of a voxel*: average loss of accuracy on
OOB samples when randomly permuting
values of the voxel

This is suboptimal with correlated voxels

Permuting one single variable ignores correlations

With several relevant & correlated voxels, they could be
deweighted because removing one does not deteriorate

accuracy
VIl is well-correlated with GI**

More on this later

“[Breiman, 2001] **[Strobl et al., 2007] 4]



Information mapping: bag of FTs

Leaves in an FT can be regression models

These can be trained using any method, in practice
LogitBoost (iterative reweighting) works well

The importance of a voxel is its average regression
weights across trees and folds
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[Richiardi et al. 2011a]

42



Information mapping from accuracy

Finally we could also map results directly
from classifier with best accuracy

Here: Haxby data, SVM-RFE 200, RF1000, intersection of
selected features across 10 folds, one slice

[Kuncheva et al. 2010] 43
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Correlated features are picked up by tree ensembles

With regularisers in SVMs, correlated
features will be deweighted (L2) or left out

(L)

[Pereira & Botvinick, 2011]

Tree ensembles have grouping effect®, where
correlated but informative features can
survive with high weight

Empirically this seems to depend on tree depth...

*[Langs et al., 2011] 45



There are ways of dealing with correlated features

Several proposals from bioinformatics have

attempted to tackle the GI/VI measure bias
Conditional Variable Importance only permutes a
correlated variable within observations where its

correlands have a certain value (accounts for correlation
structure)

Permutation IMPortance fixes for under-importance of
grouped vars by permuting class labels, then constructing
a null distribution of Gl values

These methods can be used in neuroimaging
directly...

Cond. Var. Imp. [Strobl et al, 2008]
PIMP [Altmann et al., 2010] 46 >party::cforest
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|. SINGLE SUBJECT: SPM Auditory - “Mother of All
Experiments” - | subject, 2T scanner, TR=7s, 6 blocks of
42 s rest, 42s auditory stimulation.

Task: two-class intra-subject decoding: auditory vs rest.

2. GROUP COMPARISON: Buckner checkerboard - 41
subjects from three groups, young (18-24), elderly healthy
(66-89) and elderly demented (age 68-83). Four runs per
subject, 128 volumes per run with TR=2.68s.

Task: classify young (n=28) versus old (n=30) group based
on ‘first level’ beta maps

Original auditory data at www.fil.ion.ucl.ac.uk/ [Buckner et al., 2001]
spm/data/auditory/ 4 Original visual data at fmridc.org



http://www.fil.ion.ucl.ac.uk/spm/data/auditory/
http://www.fil.ion.ucl.ac.uk/spm/data/auditory/
http://www.fil.ion.ucl.ac.uk/spm/data/auditory/
http://www.fil.ion.ucl.ac.uk/spm/data/auditory/
http://www.fil.ion.ucl.ac.uk/spm/data/auditory/
http://www.fil.ion.ucl.ac.uk/spm/data/auditory/
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The PRoNTo toolbox

Matlab code, open source, GUI / batch / scripting

Users can quickly test machine learning methods without coding
PRoNTo FRAMEWORK

« Input
. 54 | y | nd |
Data Design 1% leve 27 level "\ oulout
(NIfTI: £/sMRI, (SPM.mat, ...) Mask(s) Mask N
PET, BETAs, ...) (NIfT1) (NIFTI) optional step
v v
PREPARE SPECIFY COMPUTE
DATA & DESIGN RUN MODEL
» FEATURE SET — MODEL — ~--»  WEIGHTS
Groups PRT Extract features
) ) Targets, classes Estimate Estimate (linear)
Subjects/Scans Build kernel Cross-validation model(s) model weights
MOdallt\es 2 lC‘Vel mask Data opcraﬁons Cfeate weights
Design Detrend Machine wrapper Update PRT.mat 4D image
1" level mask Scaling SVM, GP, RF ! Y
Create PRT.mat Update PRT.mat KRR, VR E j
! Update PRTmat = = ‘tesssssssssssssnes Y
! .
| : ¥
! | 1 ] ' :
: ; ; REVIEW RESULTS
Display Display
Design Statistics
PRT Features Kernel Weights Cross-validation Plots
(.mat) (file array) (.mat) (NIfT1) Model Permutation test
Kernel Weights

http://www.mlnl.cs.ucl.ac.uk/pronto/
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http://www.mlnl.cs.ucl.ac.uk/pronto/
http://www.mlnl.cs.ucl.ac.uk/pronto/

Start PRoNTo

|. Make sure your path is setup properly

>> which spm
>> which pronto

2. Start PRoNTo

>> pronto . -

» Pattern Recognition for Neuroimaging

; data Toolbox
Main steps Review options
Data & Design Review data
'
| Prepare feature set Review kemel & CV
SR, ¥ S R Fordinime i e ]
o A A i B A SRR I BT R R | 2rar2. A & IR &1
/ SR S b7 i S B | IR AR b o AN A A I V% e O Y
L e B e | ol & B W Ly 3 N ey N1 Specify model Display results
PRONTo vi.lb = http://www.mlnl.cs.ucl.ac.uk/pronto
THIS IS AN UNSUPPORTED BETA BRANCH FOR NON-KERNEL COL Run model
INTENDED FOR THE PRNI 2013 TUTORIAL ON TREE ENSEMBLES
IT DOES NOT CONTAIN THE LATEST FIXES AND IMPROVEMENTS Batch
AND IS NOT RECOMMENDED FOR GENERAL USE.
Compute weights
SVM path: OX Credits
GP path: OK
RF path: OK

PRONTo present working directory:
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Scikit-learn / niPy

A very good alternative for python fans is to

use Scikit-learn + niPy. It has RF, Extra-trees,
and others

For people that missed Gael’s tutorial at
PRNI 201 I: http://nisl.github.io/

PyMVPA also has access to Extra-trees and
RF

54


http://nisl.github.io
http://nisl.github.io

Conclusions

Tree ensembles can offer competitive decoding
performance with SVMs, and are good for
multimodal classification

They produce information maps which are
typically sparser than L, SVMs (is this good or
bad?), and can have different interpretation

Implementations abound in the language of your
choice, including R, Matlab, Python

So... take a walk in the forest for your next
project
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Useful references - books

Criminisi,A. and Shotton, J. (eds) (201 3). Decision forests
for computer vision and medical image analysis, Springer

Hastie et al. (201 ). The Elements of Statistical Learning,
Springer.

MacKay, D.J.C. (2003). Information Theory, Inference, and
Learning Algorithms, Cambridge University Press
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