Alternatives to support vector machines in neuroimaging

ensembles of decision trees for classification and information mapping with predictive models

Jonas Richiardi

FINDlab / LabNIC http://www.stanford.edu/~richiard

Dept. of Neurology & Neurological Sciences

Dept. of Neuroscience Dept. of Clinical Neurology

Decision trees deserve more attention

Scopus june 2013:

(mapping OR "brain decoding" OR "brain reading" OR classification OR MVPA OR "multi-voxel pattern analysis") AND (neuroimaging OR "brain imaging" OR fMRI OR MRI or "magnetic resonance imaging")

- + ("support vector machine" OR "SVM") = 657 docs (1282 if adding EEG OR electroencephalography OR MEG OR magnetoencephalography)
- + ("random forest" OR "decision tree") = 71 docs (199 if adding EEG OR electroencephalography OR MEG OR magnetoencephalography)

Roughly speaking, more used at MICCAI (segmentation, geometry extraction, image reconstruction, skull stripping...) than at HBM

Tutorial agenda

Lecture

Basics

Growing trees

Ensembling

The random forest

Other forests

Tuning your forests

Information mapping

Correlated features

Practical

Datasets

Matlab/

PRoNTo

Python/Scikit

Information mapping relates model input to output

In supervised learning for classification, we seek a function mapping voxels to class labels

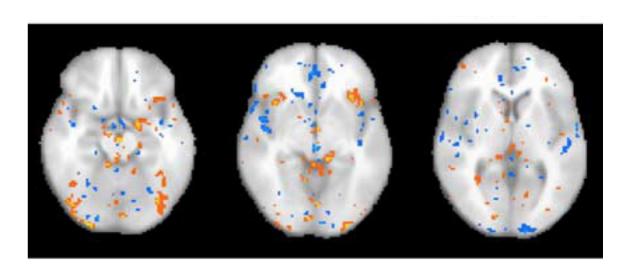
$$f(\mathbf{x}): \mathbb{R}^D \to y$$

$$y = \{0, 1\}, \mathbf{x} \in \mathbb{R}^D \quad \mathcal{S} = \{(\mathbf{x}_n, y_n)\}, n = 1, \dots, N$$

As neuroimagers, if some voxels in **x** contain information about y, the function should reflect it, and we are interested in *mapping* it

$$f(\mathbf{x}) = \operatorname{sgn}(\mathbf{w})\mathbf{x} + b$$

tells us about **relative** discriminative importance



Mutual information measures uncertainty reduction

We can also explicitly measure the amount of information **x** and y share using mutual information.

$$I(Y;X) \equiv H(Y) - H(Y|X)$$

$$H(Y) \equiv \sum_{y} P(y) log \frac{1}{P(y)}$$

high if classes are balanced (high uncertainty about class membership)

$$H(Y|X) \equiv \sum_{y,x} P(y,x) \log \frac{1}{P(y|x)}$$

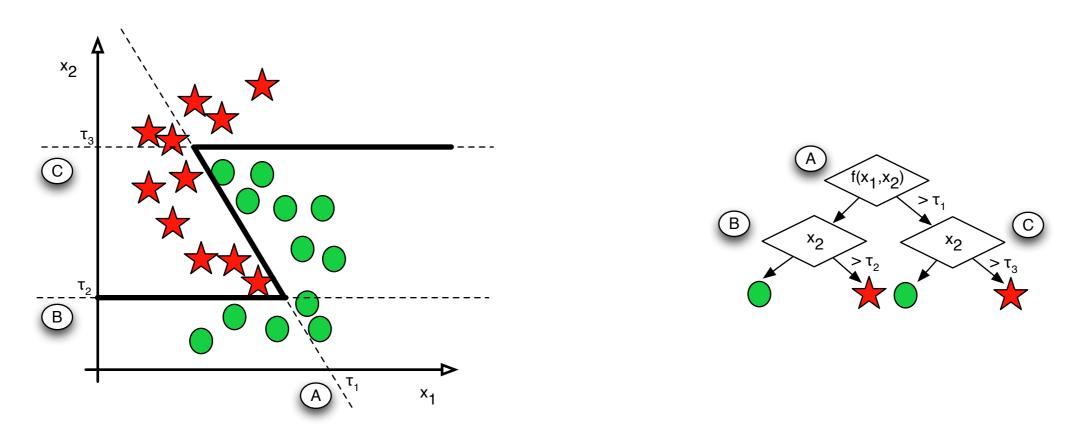
average uncertainty remaining about class label if we know the voxel intensity

$$I(Y;X) \equiv \sum_{y,x} P(y,x)log \frac{P(y,x)}{P(y)P(x)}$$

average **reduction in uncertainty** about class label if we know voxel intensity

Growing trees recursively reduces entropy

Decision trees seek to partition voxel space by intensity values to decrease uncertainty about class label



This *leaves* a few questions... How to measure goodness of splits? How to choose voxels and where to cut? When to stop growing?

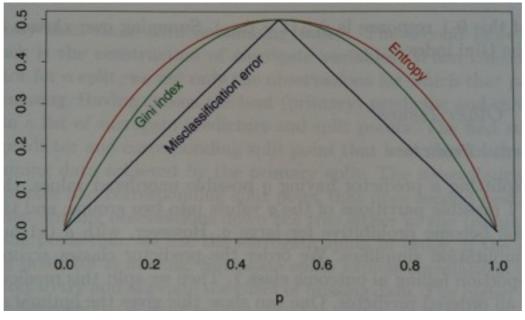
>rpart::rpart

>>stats::classregtree
>>>sklearn::tree

Split goodness can be measured

Entropy impurity:
$$H(S) \equiv \sum_{y} P(y) log \frac{1}{P(y)}$$

Gini impurity:
$$G(S) \equiv \sum_{y_i \neq y_j} P(y_i)P(y_j)$$

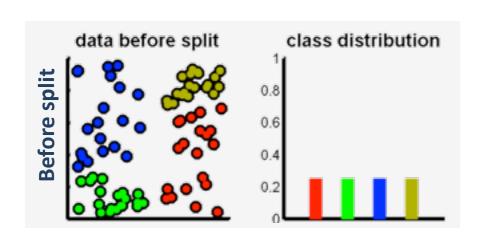


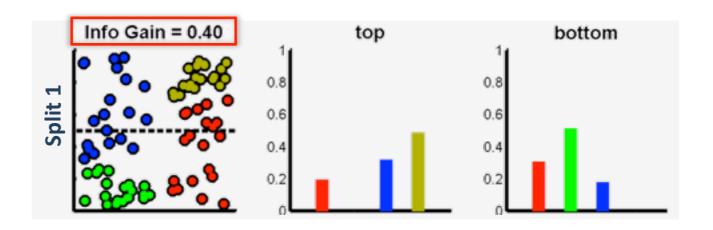
[Hastie et al., 2001]

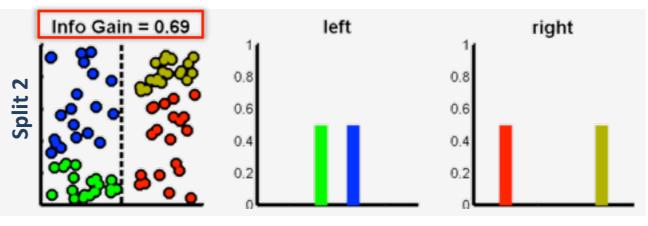
Information Gain (decrease in impurity):

$$\Delta I(\mathcal{S}; x, \tau) \equiv H(\mathcal{S}) - \sum_{i=L,R} \frac{|\mathcal{S}^i|}{|\mathcal{S}|} H(\mathcal{S}^i)$$

Information gain helps choose the best split







[Criminisi & Shotton, 2013]

Stopping and pruning matter

We can stop growing the tree

When the info gain is small

When the number of points in a leaf is small (relative or absolute) - dense regions of voxel space will be split more

When (nested) CV error does not improve any more

... but stopping criteria are hard to set

We can grow fully and then prune

Merge leaves where miminal impurity increase ensues

We can leave unpruned

These choices generally matter more than split goodness criterion (see CART vs C4.5)

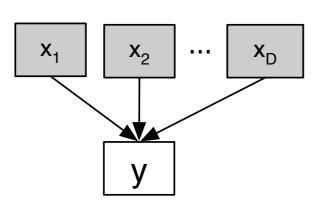
Trees relate to other models

We can view trees as kernels: build a feature space mapping with indicator functions

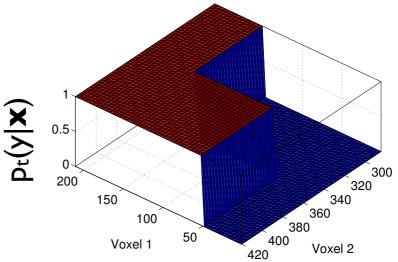
$$\Phi(\mathbf{x}) = (\mathbf{1}_1(\mathbf{x}) \dots \mathbf{1}_B(\mathbf{x}))^T$$

Then $k_b(\mathbf{x}, \mathbf{x}') = \Phi(\mathbf{x})^T \Phi(\mathbf{x}')$ is a positive kernel (only = 1 if x and x' in same leaf). Can also do 'soft' version

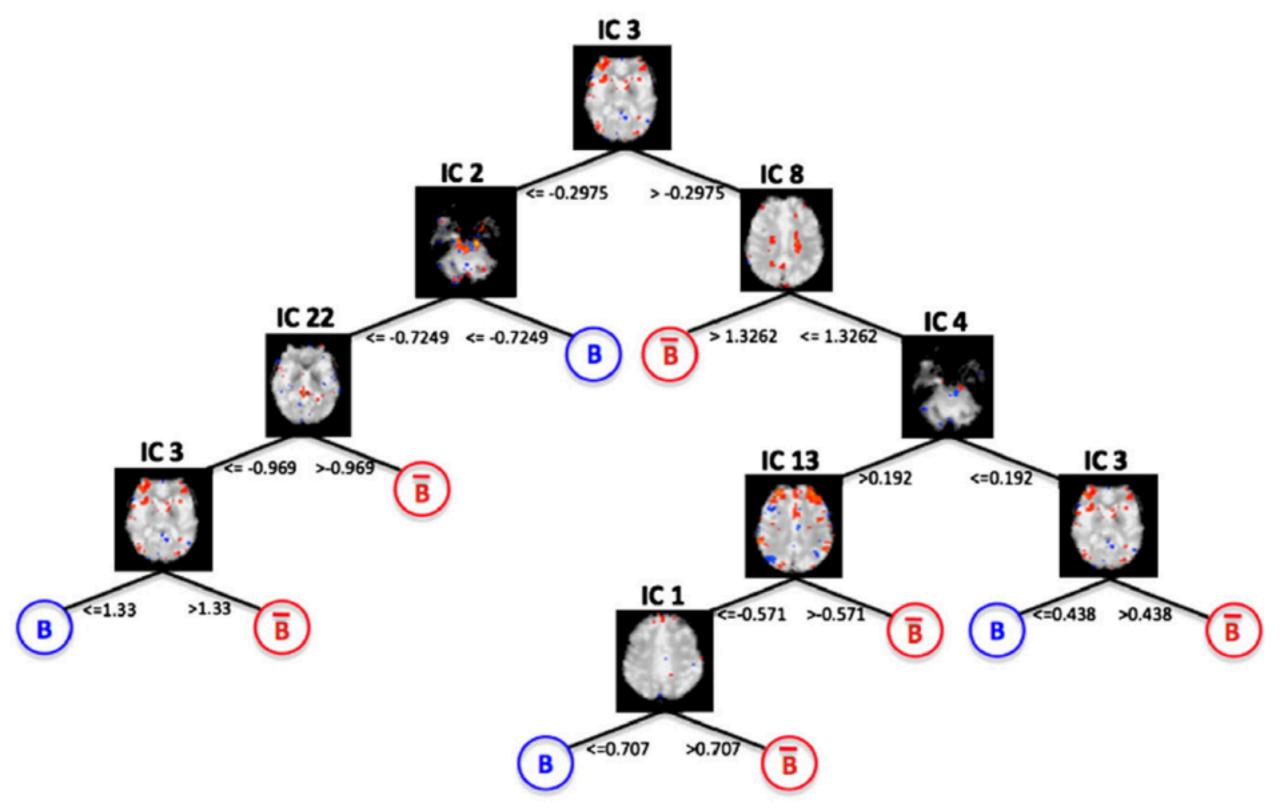
We can also view trees as encoding conditional probability distributions, e.g. represented by Bayesian Networks:



$$P(x_1,\ldots,x_D,y)=P(x_1)\cdot\ldots\cdot P(x_D)P(y|x_1,\ldots,x_D)$$



Trees are rule-based classifiers



Many trees are more complex

Multivariate trees query > I voxels per node

Splits don't have to be axis-parallel (can be oblique)

Model trees use MV regression in leaves

Functional Trees can use several voxels either at nodes or leaves

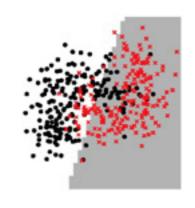
At each node, use ΔI to split on either a voxel x, or a logistic regression estimate of class probability P(y)

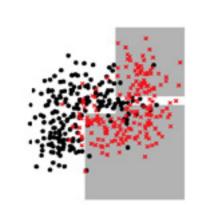
Multivariate nodes (FT-inner) reduce bias

Multivariate leaves (FT-leaves) reduces variance

Single trees vs SVMs

	SVM	Tree
Interpretability	+	+
Irrelevant voxels	+-	+
Input scaling	-	+
Speed	+ (linear)	+
Generalisation error	++	_
Information mapping	+-	-





Kuncheva&Rodriguez 2010

Tutorial agenda

Lecture

Basics

Growing trees

Ensembling

The random forest

Other forests

Tuning your forests

Information mapping

Correlated features

Practical

Datasets

Matlab/

PRoNTo

Python/Scikit

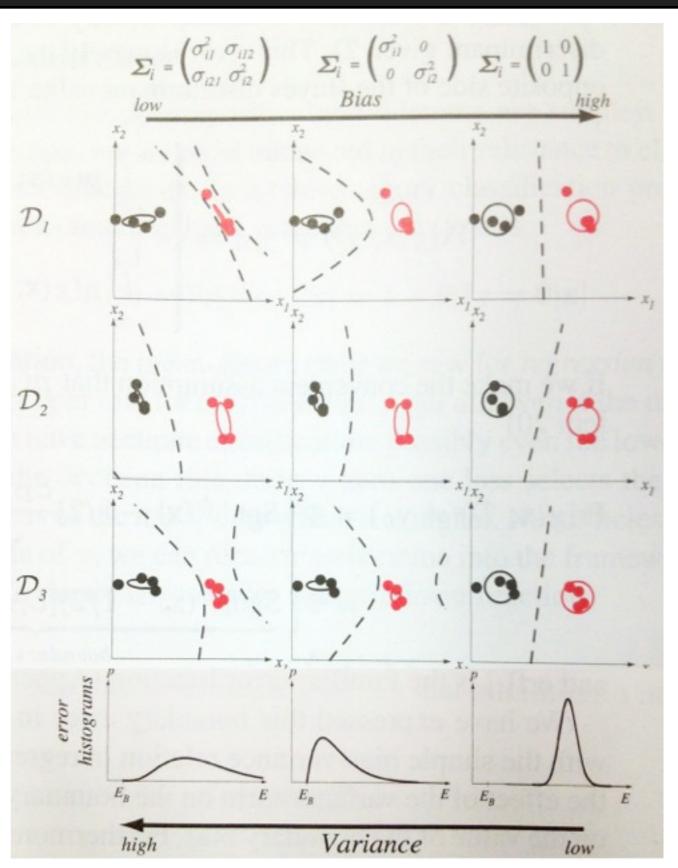
Single trees tend to have high variance

The bias-variance tradeoff applies as usual:

We can decrease prediction error arbitrarily on a given dataset, thus yielding low **bias**.

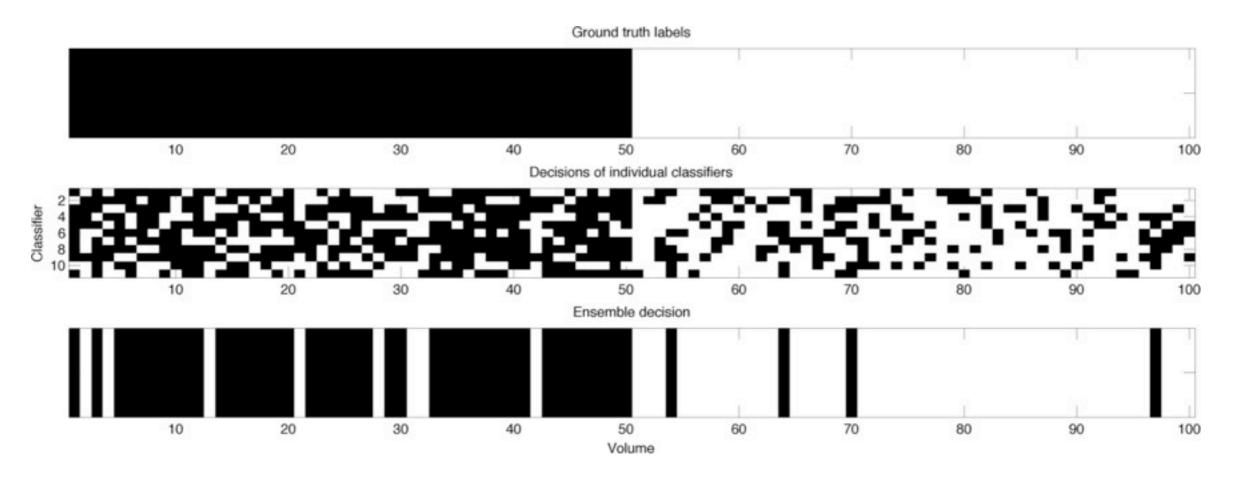
However, this systematically comes at a price in **variance**: the parameters of f can change a lot if the training set varies.

Single trees are not 'stable' - they tend to reduce bias by increasing variance



Ensembling exploits diversity

Train set of classifiers, combine predictions, get reduced ensemble variance and/or bias



Tree diversity has multiple sources

Training set variability/resampling, random projection, choice of cut point (, pruning strategy...)

Bagging classifiers generates diversity

Bagging = Boostrap aggregating

- I. Resample with replacement B times from training dataset S, yielding $\{S_b\},\ b=1,\ldots,B$
- 2. Train B base classifiers $\{f_b\}$
- 3. Get B predictions $\hat{\mathcal{F}} = \{\hat{f}_1(\mathbf{x}), \dots, \hat{f}_B(\mathbf{x})\}$
- 4. Combine by majority vote $\hat{f}(\mathbf{x}) = Mo(\hat{\mathcal{F}})$

If the base classifiers have high variance, accuracy tends to improve with bagging since this generates diversity

19

Good news for trees!

>::sample
>>stats::ClassificationBaggedEnsemble
>>sklearn::ensemble

Tutorial agenda

Lecture

Basics

Growing trees

Ensembling

The random forest

Other forests

Tuning your forests

Information mapping

Correlated features

Practical

Datasets

Matlab/

PRoNTo

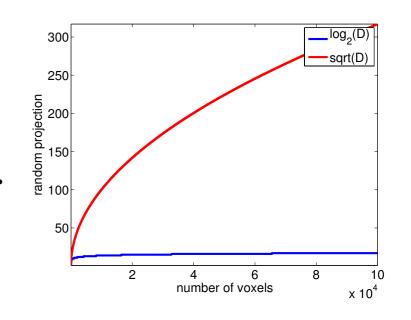
Python/Scikit

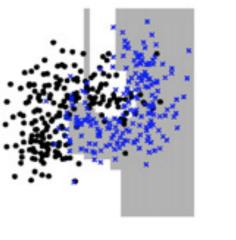
The random forest bags trees

RF combines several diversity-producing methods

- I. Generate B bootstrap replicates
- 2. At each node, randomly select a few voxels. Typically $K = \lfloor log_2 D + 1 \rfloor$ or $\lfloor \sqrt{D} \rfloor$. Since K << D, randomisation is high.

With a 'large enough' number of trees, RFs typically performs well with no tuning on many datasets





[Kuncheva&Rodriguez 2010]

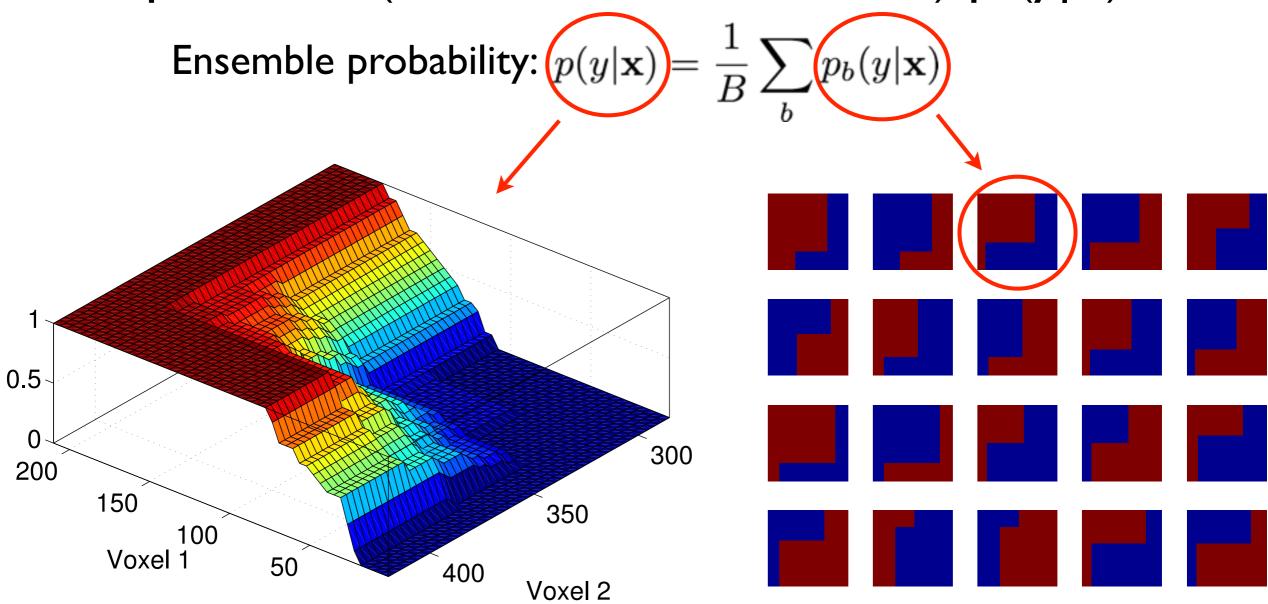
>adabag::bagging

>>stats::TreeBagger, PRoNTo::machine RT bin

>>>sklearn::RandomForestClassifier

RFs can be seen as probabilistic models

The leaf of each tree b can be seen as a posterior (multinomial distribution) $p_b(y|\mathbf{x})$



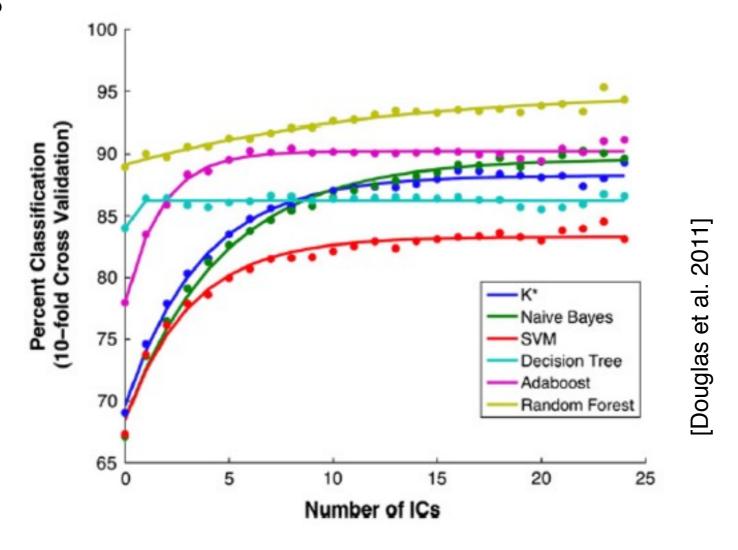
More trees = smoother posterior = less over-confidence

RF works for fMRI classification (I)

Data: event related fMRI, belief vs disbelief in statements, 14 subjects

Features: ICA timecourse value at button

press

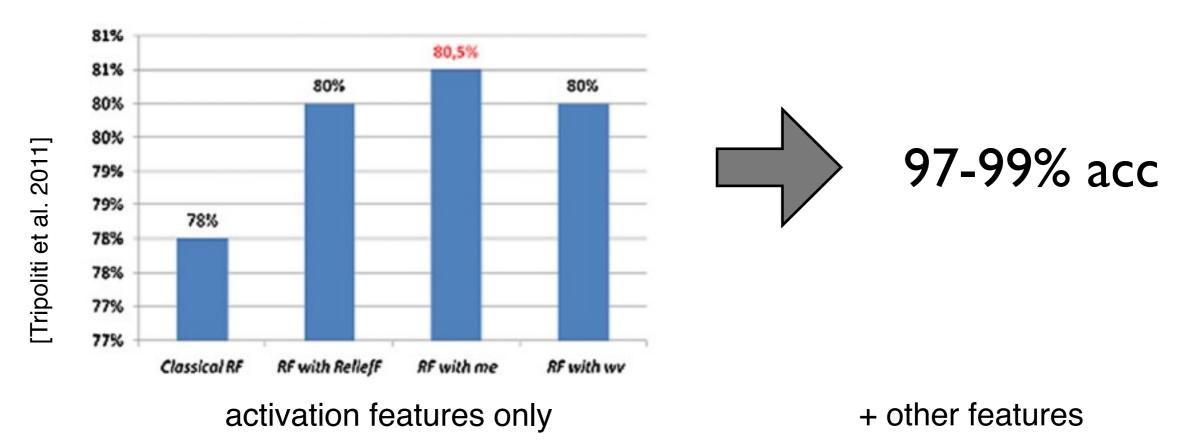


RF works for multimodal classification

Data: I4 HC young, I3 AD old, I4 HC old. Visual stimulation + keypress. fMRI.

Features: fMRI GLM activation-related (n suprathreshold voxels, peak z-score,...), RT, demographics... + feature selection

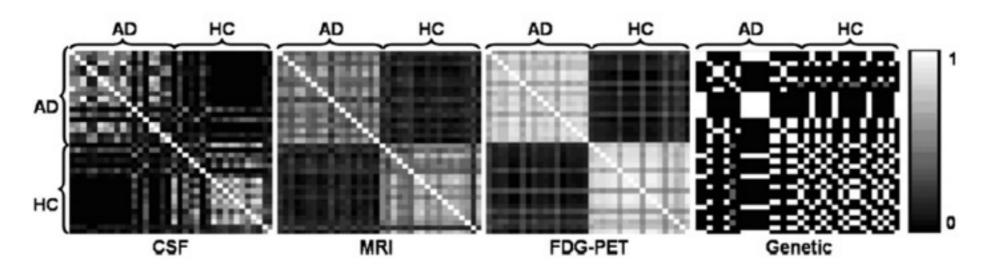
Classifiers: RF + variants of split criterion. Group classification.



RF really works for multimodal classification

Data: ADNI, 37 AD, 75 MCI, 35 HC. MRI, FDG-PET, CSF measures, I SNP

Features: RF as kernel + MDS



		CSF	MRI	FDG-PET	Genetic	Combined embedding	Concatenated features
AD/HC	Acc. (%)	76.1 (0.8)	82.5 (0.7)	86.4 (0.7)	72.6 (0.9)	89.0 (0.7)	86.2 (0.7)
	Bacc. (%)	76.3 (1.3)	82.1 (1.4)	86.5 (1.2)	72.7 (1.3)	89.0 (1.2)	87.1 (1.1)
	Sens. (%)	72.8 (1.3)	88.6 (1.2)	85.8 (1.2)	71.3 (1.3)	87.9 (1.2)	85.1 (1.4)
	Spec. (%)	79.8 (1.4)	75.6 (1.5)	87.1 (1.3)	74.1 (1.4)	90.0 (1.1)	86.1 (1.3)
	k	13	22	9	2	18	_
MCI/HC	Acc. (%)	61.7 (0.8)	67.3 (1.0)	53.5 (0.7)	73.8 (0.5)	74.6 (0.8)	66.3 (0.8)
	Bacc. (%)	61.7 (1.3)	69.1 (1.4)	60.2 (1.2)	60.7 (0.9)	72.7 (0.8)	65.3 (1.1)
	Sens. (%)	61.6 (1.1)	64.3 (1.3)	42.3 (1.1)	94.7 (0.5)	77.5 (1.0)	68.5 (1.5)
	Spec. (%)	61.8 (1.5)	73.9 (1.4)	78.0 (1.3)	26.6 (1.2)	67.9 (1.7)	66.9 (1.3)
	k	25	47	35	2	20	_
pMCI/sMCI	Acc. (%)	52.1 (1.0)	58.4 (1.0)	53.0 (1.0)	43.5 (0.9)	58.0 (0.9)	53.0 (1.1)
•	Bacc. (%)	52.7 (1.7)	58.3 (1.7)	52.8 (1.7)	41.2 (2.4)	57.9 (1.7)	57.3 (1.9)
	Sens. (%)	57.9 (1.6)	56.9 (1.6)	50.6 (1.8)	27.4 (2.0)	57.1 (1.8)	49.6 (1.4)
	Spec. (%)	47.5 (1.7)	59.7 (1.8)	54.9 (1.6)	55.0 (2.7)	58.7 (1.5)	53.5 (1.7)
	k	21	38	35	1	29	_

Tutorial agenda

Lecture

Basics

Growing trees

Ensembling

The random forest

Other forests

Tuning your forests

Information mapping

Correlated features

Practical

Datasets

Matlab/

PRoNTo

Python/Scikit

Extremely Randomised Trees increase diversity

Tree variance is due in large part to cutpoint choice. We can generate even more diversity with Extra-trees

Select both K voxels and cutpoints at random, pick best*.

Stop growing when leaves are small

When K=I, called totally randomized trees

+ Accuracy and variance reduction competitive with and sometimes better than RF, faster than RF

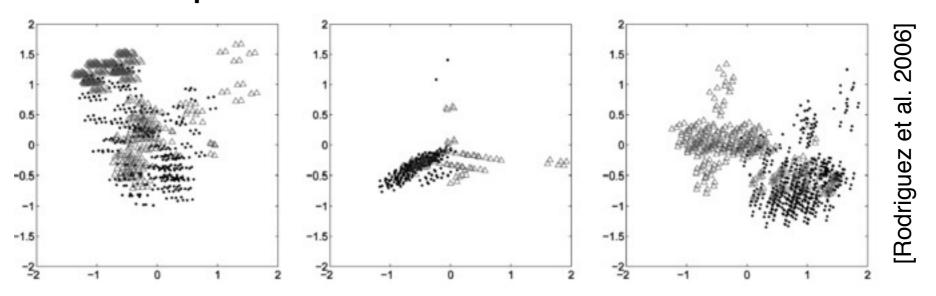
Extra-trees: [Geurts et al., 2006]

^{*}Dietterich 1998 - the opposite: select top-K best splits, then pick at random

Rotation forests do subspace PCA

We can also generate random rotations of the data to add diversity. For each tree:

- I. Project training data \mathbf{X} into M random non-overlapping subspaces, each of size K
- 2. For each subspace: choose a subset of classes, draw 75% bootstrap, do PCA

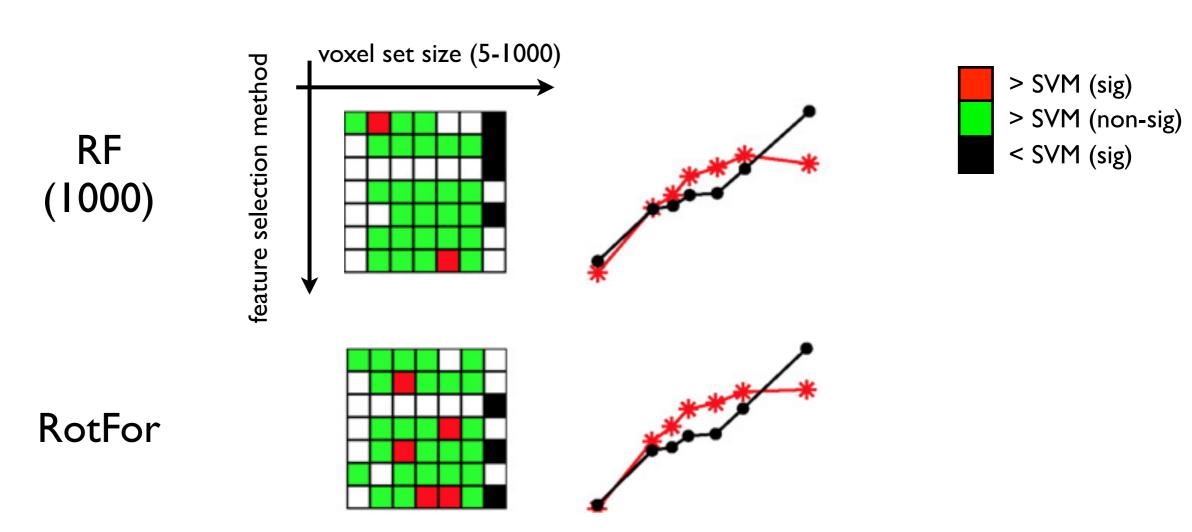


- 3. Rearrange PCs into a block-diag matrix **R** and project whole training set to **XR**.
- 4. Train the tree

RotFor works for fMRI

Data: Haxby (8 classes, 90 points per class, 43K voxels)

Tests: feature selection, ensembles vs SVM



Ensemble of FTs may improve accuracy

PCA-derived features are multivariate in the original space, so in fact RotFor does axis-parallel (univariate) cuts on MV data...

We can also try slightly more stable MV trees instead of univariate trees (trade diversity for accuracy)

On 62 UCI low-dimensional datasets, it seems that Bagging + FT-leaves works about the same as RotFor + univariate tree*. All other ensembles of univariate trees perform worse...

On high-dimensional fMRI connectivity data**, and low-dimensional graph/vertex attribute representations of fMRI connectivity***, bags of FTs work quite well

Trees ensembles vs SVMs

	SVM	Tree ensembles	
Interpretability	+	+-	
Irrelevant voxels	+_	+	
Input scaling	-	+	
Speed	+ (linear)	+ (parallel)	
Generalisation error	++	++	
Information Mapping	+_	++ (see later)	

Tutorial agenda

Lecture

Basics

Growing trees

Ensembling

The random forest

Other forests

Tuning your forests

Information mapping

Correlated features

Practical

Datasets

Matlab/

PRoNTo

Python/Scikit

More trees is generally better

For many tree ensembles, more trees (L) lead to more decrease in variance

Typically use several hundreds to reach plateau (Langs: 40K)

Large L"better approximates infinity" than small L

For RF, the out-of-bag error estimate's bias decreases a lot with increasing trees - bootstrapping uses ~2/3 of data for each tree, more trees leads to better OOB estimate

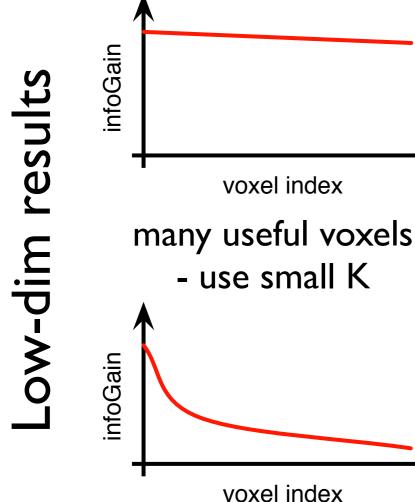
This also gives a much smoother posterior distribution

For multivariate trees, use fewer trees

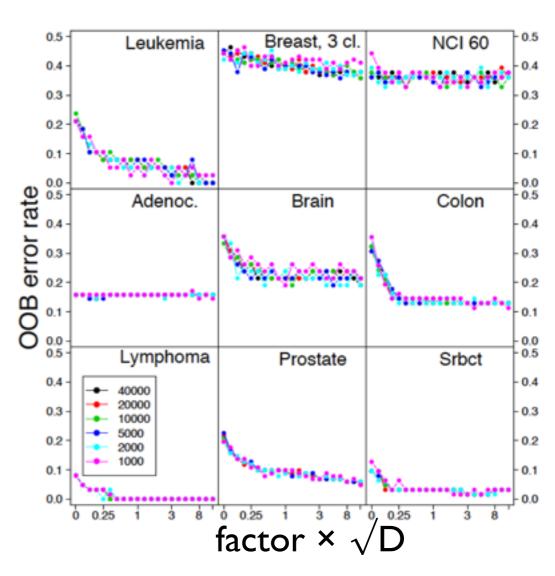
10-30 works well empirically on very different datasets

Projection dimension depends on distribution of informativeness

The optimal projection dimension, K, depends on the presence of irrelevant voxels



information concentrated in few voxels - use large K



D=2-10K, N=40-100, C=2-8

Tutorial agenda

Lecture

Basics

Growing trees

Ensembling

The random forest

Other forests

Tuning your forests

Information mapping

Correlated features

Practical

Datasets

Matlab/

PRoNTo

Python/Scikit

Tree ensembles directly provide information maps

The split criterion and related measures are natural indicators of the 'usefulness' of voxels in the discrimination task

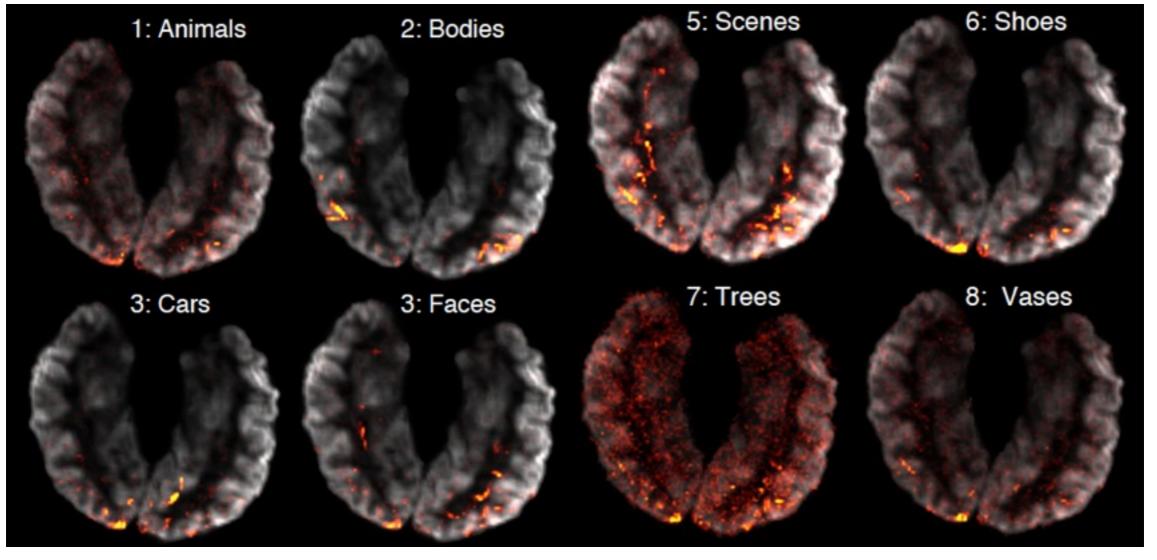
But they are unsigned

They are computed at each node of the tree, so we can aggregate them over trees to get stable estimates

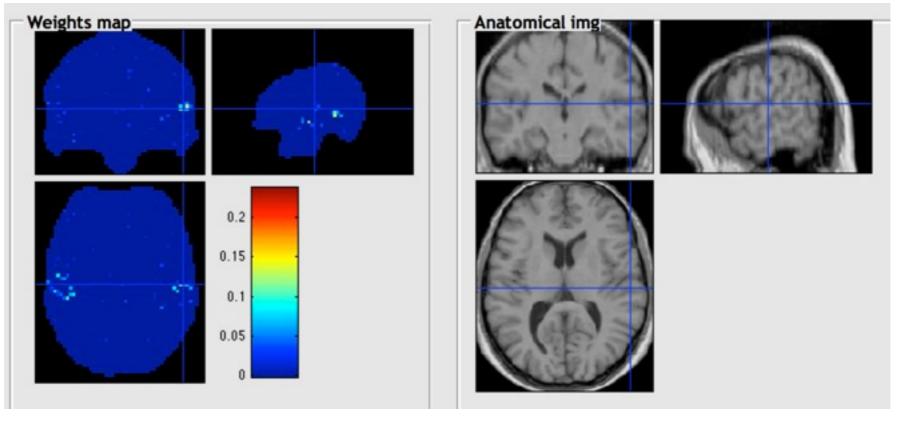
Different ensembles provide different information maps, and we can use other data than split criteria to map

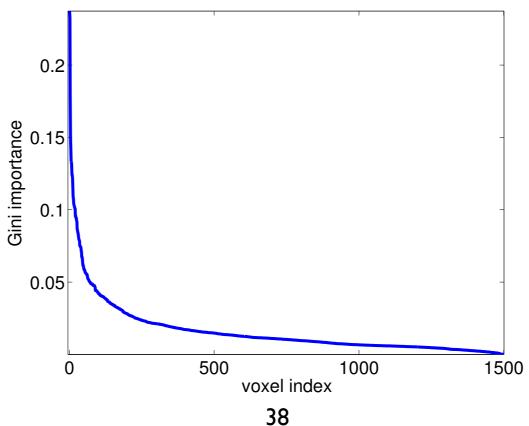
Information mapping: RF/Gini importance

GI of a voxel: infoGain (compute with Gini impurity) for this voxel, averaged over all trees in ensemble

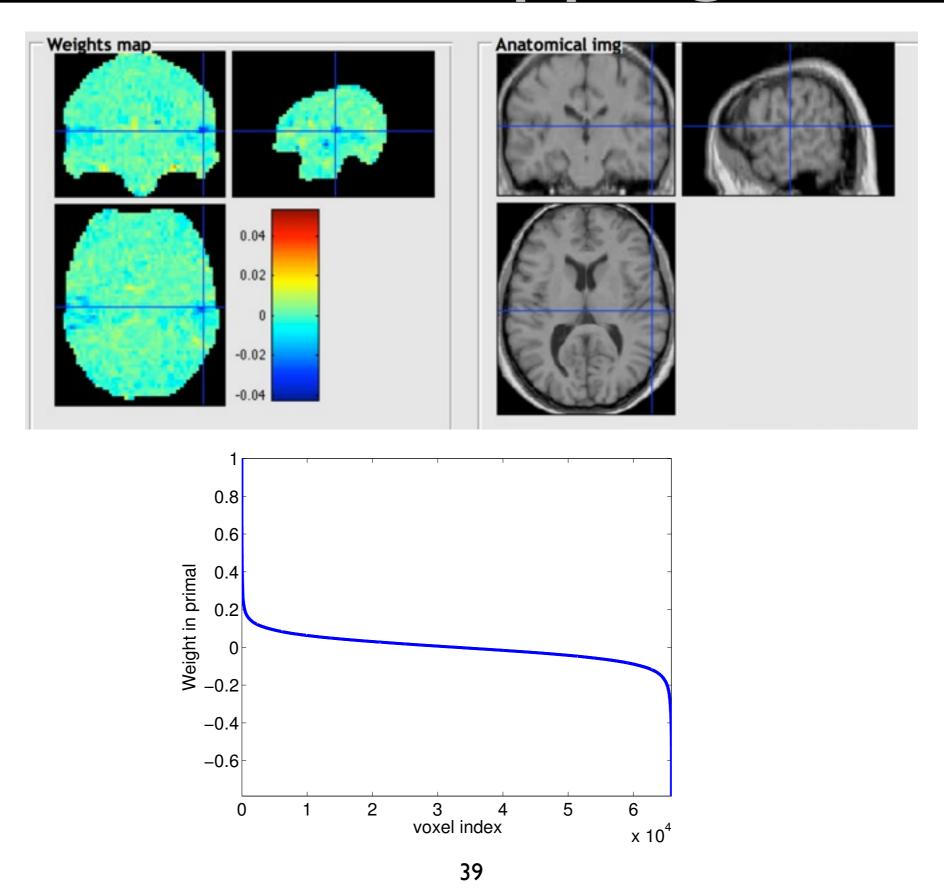


Information mapping: RF/GI/var



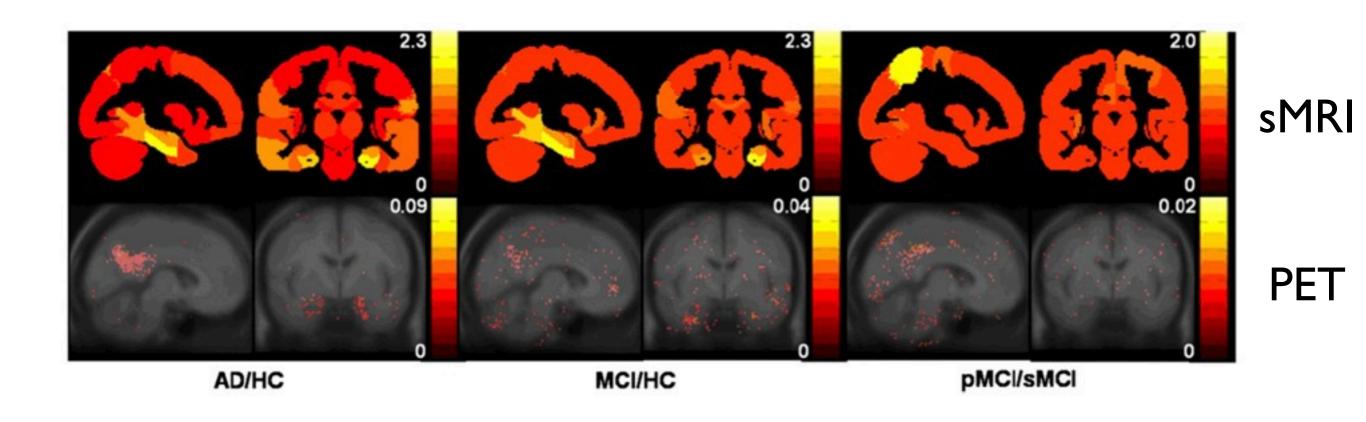


Information Mapping: L2 SVM



Information mapping - Regional Gl

Data: ADNI, 37 AD, 75 MCI, 35 HC. MRI, FDG-PET, CSF measures, I SNP



Information mapping: RF/Variable importance

VI of a voxel*: average loss of accuracy on OOB samples when randomly permuting values of the voxel

This is suboptimal with correlated voxels

Permuting one single variable ignores correlations

With several relevant & correlated voxels, they could be deweighted because removing one does not deteriorate accuracy

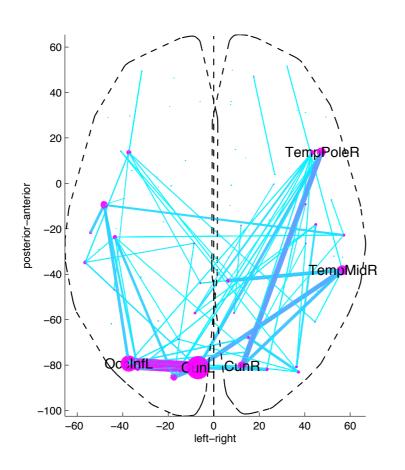
VI is well-correlated with GI**

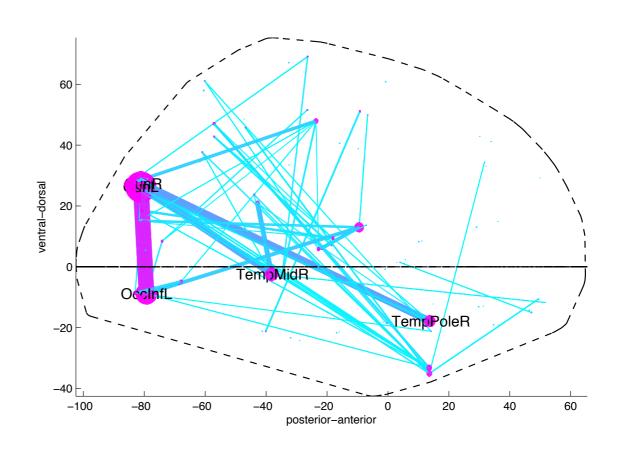
More on this later

Information mapping: bag of FTs

Leaves in an FT can be regression models

These can be trained using any method, in practice LogitBoost (iterative reweighting) works well The importance of a voxel is its average regression weights across trees and folds



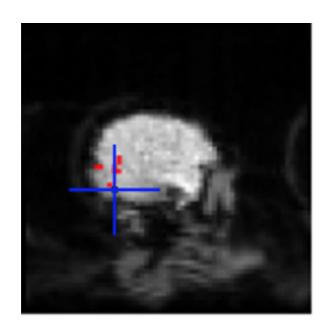


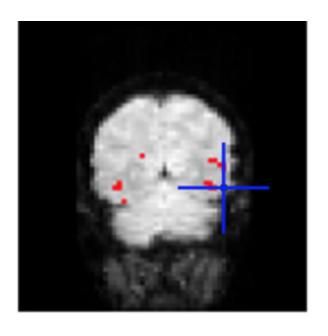
[Richiardi et al. 2011a]

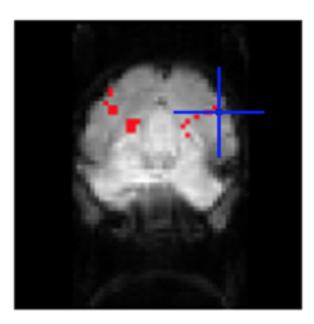
Information mapping from accuracy

Finally we could also map results directly from classifier with best accuracy

Here: Haxby data, SVM-RFE 200, RF1000, intersection of selected features across 10 folds, one slice







Lecture

Basics

Growing trees

Ensembling

The random forest

Other forests

Tuning your forests

Information mapping

Correlated features

Practical

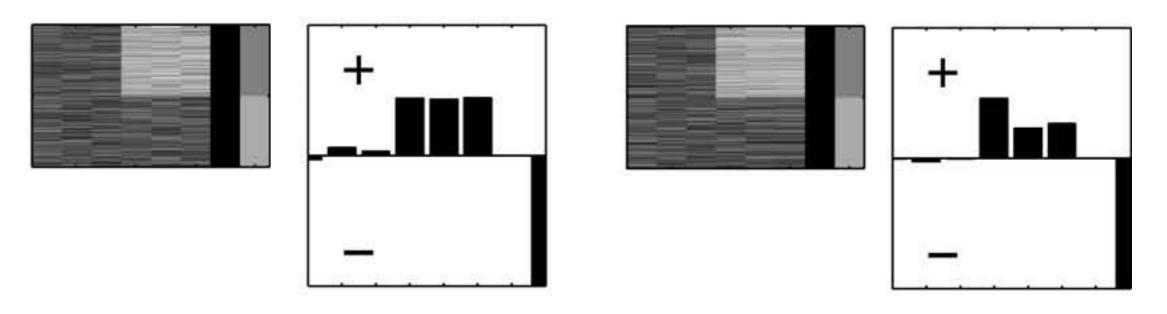
Datasets

Matlab/

PRoNTo

Correlated features are picked up by tree ensembles

With regularisers in SVMs, correlated features will be deweighted (L_2) or left out (L_1)



Tree ensembles have grouping effect*, where correlated but informative features can survive with high weight

Empirically this seems to depend on tree depth...

There are ways of dealing with correlated features

Several proposals from bioinformatics have attempted to tackle the GI/VI measure bias

Conditional Variable Importance only permutes a correlated variable within observations where its correlands have a certain value (accounts for correlation structure)

Permutation IMPortance fixes for under-importance of grouped vars by permuting class labels, then constructing a null distribution of GI values

These methods can be used in neuroimaging directly...

Lecture

Basics

Growing trees

Ensembling

The random forest

Other forests

Tuning your forests

Information mapping

Correlated features

Practical

Datasets

Matlab/

PRoNTo

Lecture

Basics

Growing trees

Ensembling

The random forest

Other forests

Tuning your forests

Information mapping

Correlated features

Practical

Datasets

Matlab/

PRoNTo

Datasets

- I. SINGLE SUBJECT: SPM Auditory "Mother of All Experiments" I subject, 2T scanner, TR=7s, 6 blocks of 42 s rest, 42s auditory stimulation.

 Task: two-class intra-subject decoding: auditory vs rest.
- 2. GROUP COMPARISON: Buckner checkerboard 41 subjects from three groups, young (18-24), elderly healthy (66-89) and elderly demented (age 68-83). Four runs per subject, 128 volumes per run with TR=2.68s. Task: classify young (n=28) versus old (n=30) group based on 'first level' beta maps

Lecture

Basics

Growing trees

Ensembling

The random forest

Other forests

Tuning your forests

Information mapping

Correlated features

Practical

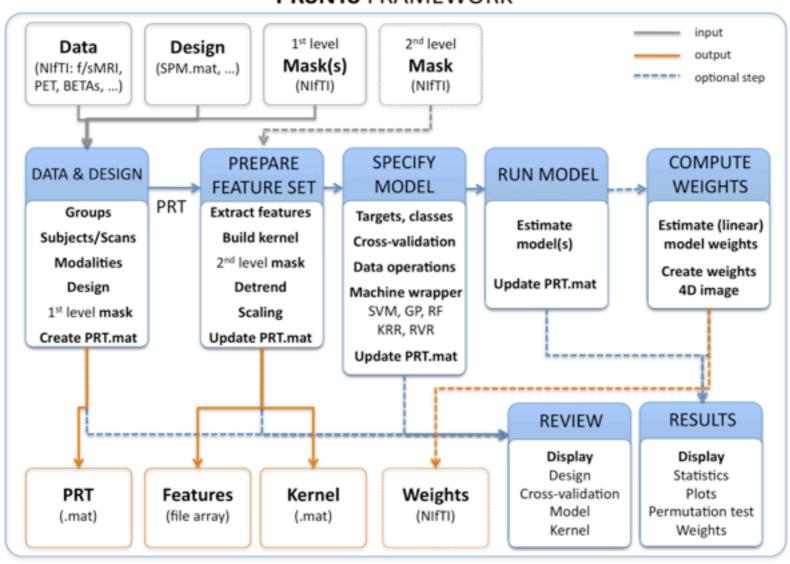
Datasets

Matlab/ PRoNTo

The PRoNTo toolbox

Matlab code, open source, GUI / batch / scripting

Users can quickly test machine learning methods without coding



http://www.mlnl.cs.ucl.ac.uk/pronto/

Start PRoNTo

I. Make sure your path is setup properly

- >> which spm
- >> which pronto

2. Start PRoNTo

>> pronto PRONTO Pattern Recognition for Neuroimaging data Toolbox Main steps Review options Data & Design Review data Review kernel & CV Prepare feature set Specify model Display results PRONTO v1.1b - http://www.mlnl.cs.ucl.ac.uk/pronto THIS IS AN UNSUPPORTED BETA BRANCH FOR NON-KERNEL COL Run model INTENDED FOR THE PRNI 2013 TUTORIAL ON TREE ENSEMBLES Batch IT DOES NOT CONTAIN THE LATEST FIXES AND IMPROVEMENTS AND IS NOT RECOMMENDED FOR GENERAL USE. Compute weights Credits SVM path: OK GP path: OK RF path: OK PRONTo present working directory:

Lecture

Basics

Growing trees

Ensembling

The random forest

Other forests

Tuning your forests

Information mapping

Correlated features

Practical

Datasets

Matlab/ PRoNTo

Scikit-learn / niPy

A very good alternative for python fans is to use Scikit-learn + niPy. It has RF, Extra-trees, and others

For people that missed Gaël's tutorial at PRNI 2011: http://nisl.github.io/

PyMVPA also has access to Extra-trees and RF

Conclusions

Tree ensembles can offer competitive decoding performance with SVMs, and are good for multimodal classification

They produce information maps which are typically sparser than L₂ SVMs (is this good or bad?), and can have different interpretation

Implementations abound in the language of your choice, including R, Matlab, Python

So... take a walk in the forest for your next project

Thanks

FINDlab, Stanford University

A.Altmann

Computational Image Analysis and Radiology, Medical U. of Vienna /

CSAIL, MIT

G. Langs

Montefiore Institute, U. of Liège

P. Geurts

FIL, UCL

G. Rees

PRoNTo team members @ UCL, KCL, U. Liège, NIH

J. Ashburner, C. Chu, A. Marquand, J. Mourao-Miranda, C. Phillips, J. Rondina, M. J. Rosa, J. Schrouff + João de Matos Monteiro

Computer Vision Group, U. Freiburg

A. Abdulkadir

Modelling and Inference on Brain networks for Diagnosis, MC IOF #299500

Useful references - books

Criminisi, A. and Shotton, J. (eds) (2013). Decision forests for computer vision and medical image analysis, Springer

Hastie et al. (2011). The Elements of Statistical Learning, Springer.

MacKay, D.J.C. (2003). Information Theory, Inference, and Learning Algorithms, Cambridge University Press

References in tutorial

Altmann, A. et al. (2010). Permutation importance: a corrected feature importance measure Breiman, L. (1996). Bagging Predictors, Machine Learning 24

Diaz-Uriarte et al. (2006). Gene selection and classification of microarray data using random forest. BMC Bioinformatics 7:3

Douglas, P.K. et al. (2011). Performance comparison of machine learning algorithms and number of independent components used in fMRI decoding of belief vs. disbelief. NeuroImage 56.

Gama, J. (2004). Functional Trees. Machine Learning 55

Geurts P. et al. (2006). Extremely randomized trees, Machine Learning 63:3-42

Gray, K. et al. (2013). Random forest-based similarity measures for multi-modal classification of Alzheimer's disease. NeuroImage 65.

Ho, T. K. (1998). The random subspace method for constructing decision forests. IEEE TPAMI 20(8) Kuncheva, L.I. and Rodriguez, J.J. (2010). Classifier ensembles for fMRI data analysis: an experiment. Magnetic Resonance Imaging 28

Langs, G. et al. (2011). Detecting stable distributed patterns of brain activation using Gini contrast. Neurolmage 56(2)

Mourao-Miranda, J. et al. (2005). Classifying brain states and determining the discriminating activation patterns: Support Vector Machine on functional MRI data. NeuroImage 28.

Pereira, F., Botvinick, M. (2011). Information mapping with pattern classifiers: A comparative study. Neurolmage 56(2).

Rodriguez, J.J. et al. (2006). Rotation Forest: A New Classifier Ensemble Method, IEEE TPAMI 28(10)

Rodriguez, J.J. et al. (2010). An Experimental Study on Ensembles of Functional Trees. Proc. MCS Strobl, C. et al. (2008). Conditional variable importance for random forests. BMC Bioinf. 9:307 Tripoliti, E. E. et al. (2011). A supervised method to assist the diagnosis and monitor progression of Alzheimer's disease using data from an fMRI experiment. Artificial Intelligence in Medicine 53

More references

Richiardi, J. (2007). Probabilistic models for multi-classifier biometric authentication using quality measures. Ph.D. thesis, EPFL. Richiardi, J. et al. (2011a). Decoding brain states from fMRI connectivity graphs. NeuroImage 56 Richiardi, J. et al. (2011b). Classifying connectivity graphs using graph and vertex attributes. Proc. PRNI