
Alternatives to support vector machines 
in neuroimaging

ensembles of decision trees for classification and 
information mapping with predictive models

PRNI2013 tutorial

Jonas Richiardi
FINDlab / LabNIC

http://www.stanford.edu/~richiard

Dept. of Neurology & 
Neurological Sciences

Dept. of Neuroscience
Dept. of Clinical Neurology

http://people.stanford.edu/richiard
http://people.stanford.edu/richiard


Decision trees deserve more attention
Scopus june 2013:

(mapping OR "brain decoding" OR "brain reading" OR classification OR 
MVPA OR "multi-voxel pattern analysis") AND (neuroimaging OR "brain 
imaging" OR fMRI OR MRI or "magnetic resonance imaging")

+ ("support vector machine" OR "SVM") = 657 docs 
(1282 if adding EEG OR electroencephalography OR MEG OR magnetoencephalography)

+ ("random forest" OR "decision tree") = 71 docs
(199 if adding EEG OR electroencephalography OR MEG OR magnetoencephalography)

Roughly speaking, more used at MICCAI 
(segmentation, geometry extraction, image 
reconstruction, skull stripping...) than at HBM
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Information mapping relates model input to output

In supervised learning for classification, we 
seek a function mapping voxels to class labels

As neuroimagers, if some voxels in x contain 
information about y, the function should 
reflect it, and we are interested in mapping it
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f(x) = sgn(wT
x+ b)

[Mourao-Miranda et al., NeuroImage, 2005]

tells us about relative
discriminative importance

f(x) : RD ! y

y = {0, 1}, x 2 RD S = {(xn, yn)}, n = 1, . . . , N



Mutual information measures uncertainty reduction

We can also explicitly measure the amount of 
information x and y share using mutual 
information.
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Growing trees recursively reduces entropy

Decision trees seek to partition voxel space 
by intensity values to decrease uncertainty 
about class label

8

x1

x2

A
�1

f(x1,x2)
A

> �1

x1

x2

A

B

�1

�2

f(x1,x2)

x2

A

B

> �2

> �1

x1

x2

A

B

C

�1

�2

�3

f(x1,x2)

x2x2

A

B C

> 
3> 
2

> 
1

This leaves a few questions... How to measure goodness of 
splits? How to choose voxels and where to cut ? When to 
stop growing? >rpart::rpart

>>stats::classregtree
>>>sklearn::tree



Split goodness can be measured
Entropy impurity:

Gini impurity:

Information Gain (decrease in impurity):
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[Hastie et al., 2001]

�I(S;x, ⌧) ⌘ H(S)�
X

i=L,R

|Si|
|S| H(Si)



Information gain helps choose the best split
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Stopping and pruning matter
We can stop growing the tree

When the info gain is small

When the number of points in a leaf is small (relative or 
absolute) - dense regions of voxel space will be split more

When (nested) CV error does not improve any more

... but stopping criteria are hard to set

We can grow fully and then prune
Merge leaves where miminal impurity increase ensues

We can leave unpruned

These choices generally matter more than split 
goodness criterion (see CART vs C4.5)

11



Trees relate to other models
We can view trees as kernels: build a feature space 
mapping with indicator functions

Then                                is a positive kernel (only = 1 if x and x’ 
in same leaf). Can also do ‘soft’ version

We can also view trees as encoding conditional 
probability distributions, e.g. represented by 
Bayesian Networks:

12Kernel view: [Geurts et al., 2006] BN view: [Richiardi, 2007], others
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Trees are rule-based classifiers

13

[Douglas et al. 2011]



Many trees are more complex
Multivariate trees query >1 voxels per node

Splits don’t have to be axis-parallel (can be oblique)

Model trees use MV regression in leaves

Functional Trees can use several voxels either 
at nodes or leaves

At each node, use ΔI to split on either a voxel x, or a 
logistic regression estimate of class probability P(y)

Multivariate nodes (FT-inner) reduce bias

Multivariate leaves (FT-leaves) reduces variance

14Functional trees: [Gama, 2004]



Single trees vs SVMs
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SVM Tree
Interpretability + +

Irrelevant voxels +- +
Input scaling - +

Speed + (linear) +
Generalisation error ++ -
Information mapping +- -
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Single trees tend to have high variance
The bias-variance tradeoff 
applies as usual:

We can decrease prediction 
error arbitrarily on a given 
dataset, thus yielding low bias.

However, this systematically 
comes at a price in variance: 
the parameters of f can change a 
lot if the training set varies.

Single trees are not ‘stable’ - they 
tend to reduce bias by increasing 
variance

17 [Duda et al, 2001]



Ensembling exploits diversity
Train set of classifiers, combine predictions, get 
reduced ensemble variance and/or bias

Tree diversity has multiple sources

Training set variability/resampling, random 
projection, choice of cut point (, pruning strategy...)

18



Bagging classifiers generates diversity
Bagging = Boostrap aggregating

1. Resample with replacement B times from training 
dataset    , yielding 

2. Train B base classifiers      

3. Get B predictions

4. Combine by majority vote

If the base classifiers have high variance, 
accuracy tends to improve with bagging since 
this generates diversity

Good news for trees!

19

S {Sb}, b = 1, . . . , B

{fb}

[Breiman, 1996]

>::sample
>>stats::ClassificationBaggedEnsemble 
>>>sklearn::ensemble
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The random forest bags trees
RF combines several diversity-producing 
methods

1. Generate B bootstrap replicates

2.  At each node, randomly select a few
voxels. Typically                           or        .
Since K << D, randomisation is high.

3. No pruning

With a ‘large enough’ number of
trees, RFs typically performs well
with no tuning on many datasets
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>adabag::bagging
>>stats::TreeBagger, PRoNTo::machine_RT_bin
>>>sklearn::RandomForestClassifierRandom projection: [Ho, 1998]
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RFs can be seen as probabilistic models
The leaf of each tree b can be seen as a 
posterior (multinomial distribution) pb(y|x)

Ensemble probability: 

22

50

100

150

200
300

350

400

0

0.5

1

Voxel 2

Voxel 1

More trees = smoother posterior = less over-confidence



RF works for fMRI classification (1)
Data: event related fMRI, belief vs disbelief in 
statements, 14 subjects

Features: ICA timecourse value at button 
press
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RF works for multimodal classification
Data: 14 HC young, 13 AD old, 14 HC old. Visual stimulation + 
keypress. fMRI.

Features: fMRI GLM activation-related (n suprathreshold 
voxels, peak z-score,...), RT, demographics... + feature selection

Classifiers: RF + variants of split criterion. Group classification.

24
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RF really works for multimodal classification
Data: ADNI, 37 AD, 75 MCI, 35 HC. MRI, FDG-PET, CSF measures, 1 SNP

Features: RF as kernel + MDS

25[Gray et al 2013]
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Extremely Randomised Trees increase diversity

Tree variance is due in large part to cutpoint 
choice. We can generate even more diversity 
with Extra-trees

Select both K voxels and cutpoints at random, pick best*. 

Stop growing when leaves are small

When K=1, called totally randomized trees

+ Accuracy and variance reduction 
competitive with and sometimes better than 
RF, faster than RF

27

>extraTrees::extraTrees
>>PRoNTo::machine_RT_bin
>>>sklearn::ExtraTreesClassifier

Extra-trees: [Geurts et al., 2006]
*Dietterich 1998 - the opposite: select top-K best 
splits, then pick at random



Rotation forests do subspace PCA
We can also generate random rotations of 
the data to add diversity. For each tree:

1. Project training data X into M random non-overlapping 
subspaces, each of size K
2. For each subspace: choose a subset of classes, draw 
75% bootstrap, do PCA

3. Rearrange PCs into a block-diag matrix R and project 
whole training set to XR.
4. Train the tree

28

>Weka via rJava
>>Weka via writeARFF or Java
>>>?
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RotFor works for fMRI
Data: Haxby (8 classes, 90 points per class, 
43K voxels)

Tests: feature selection, ensembles vs SVM

29[Kuncheva&Rodriguez 2010]
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Ensemble of FTs may improve accuracy
PCA-derived features are multivariate in the original 
space, so in fact RotFor does axis-parallel (univariate) 
cuts on MV data...

We can also try slightly more stable MV trees instead 
of univariate trees (trade diversity for accuracy)

On 62 UCI low-dimensional datasets, it seems that Bagging + FT-
leaves works about the same as RotFor + univariate tree* .  All other 
ensembles of univariate trees perform worse...

On high-dimensional fMRI connectivity data**, and low-dimensional 
graph/vertex attribute representations of fMRI connectivity***, bags 
of FTs work quite well

30*[Rodriguez et al, 2010] **[Richiardi et al, 2011a] ***[Richiardi et al, 2011b]



Trees ensembles vs SVMs

31

SVM Tree ensembles
Interpretability + +-

Irrelevant voxels +- +
Input scaling - +

Speed + (linear) + (parallel)
Generalisation error ++ ++
Information Mapping +- ++ (see later)
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More trees is generally better
For many tree ensembles, more trees (L) lead 
to more decrease in variance

Typically use several hundreds to reach plateau (Langs: 40K)

Large L “better approximates infinity” than small L

For RF, the out-of-bag error estimate’s bias decreases a lot 
with increasing trees - bootstrapping uses ~2/3 of data for 
each tree, more trees leads to better OOB estimate

This also gives a much smoother posterior distribution

For multivariate trees, use fewer trees

10-30 works well empirically on very different datasets

33



Projection dimension depends on distribution of informativeness

The optimal projection dimension, K, 
depends on the presence of irrelevant voxels

34
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Tree ensembles directly provide information maps

The split criterion and related measures are 
natural indicators of the ‘usefulness’ of voxels 
in the discrimination task

But they are unsigned

They are computed at each node of the 
tree, so we can aggregate them over trees to 
get stable estimates

Different ensembles provide different 
information maps, and we can use other data 
than split criteria to map

36



Information mapping: RF/Gini importance

GI of a voxel: infoGain (compute with Gini 
impurity) for this voxel, averaged over all 
trees in ensemble

37
[Langs et al., 2011]



Information mapping: RF/GI/var
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Information Mapping: L2 SVM
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Information mapping - Regional GI

40[Gray et al 2013]

Data: ADNI, 37 AD, 75 MCI, 35 HC. MRI, 
FDG-PET, CSF measures, 1 SNP

sMRI

PET



Information mapping: RF/Variable importance

VI of a voxel*: average loss of accuracy on 
OOB samples when randomly permuting 
values of the voxel

This is suboptimal with correlated voxels

Permuting one single variable ignores correlations

With several relevant & correlated voxels, they could be 
deweighted because removing one does not deteriorate 
accuracy

VI is well-correlated with GI**

More on this later

41*[Breiman, 2001] **[Strobl et al., 2007]



Information mapping: bag of FTs
Leaves in an FT can be regression models

These can be trained using any method, in practice 
LogitBoost (iterative reweighting) works well
The importance of a voxel is its average regression 
weights across trees and folds
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Information mapping from accuracy
Finally we could also map results directly 
from classifier with best accuracy

Here: Haxby data, SVM-RFE 200, RF1000, intersection of 
selected features across 10 folds, one slice 

43[Kuncheva et al. 2010]
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Correlated features are picked up by tree ensembles

With regularisers in SVMs, correlated 
features will be deweighted (L2) or left out 
(L1)

Tree ensembles have grouping effect*, where 
correlated but informative features can 
survive with high weight

Empirically this seems to depend on tree depth... 
45*[Langs et al., 2011]
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There are ways of dealing with correlated features

Several proposals from bioinformatics have 
attempted to tackle the GI/VI measure bias

Conditional Variable Importance only permutes a 
correlated variable within observations where its 
correlands have a certain value (accounts for correlation 
structure)

Permutation IMPortance fixes for under-importance of 
grouped vars by permuting class labels, then constructing 
a null distribution of GI values

These methods can be used in neuroimaging 
directly...

46
Cond. Var. Imp. [Strobl et al, 2008]

PIMP [Altmann et al., 2010] >party::cforest
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Datasets
1. SINGLE SUBJECT: SPM Auditory - “Mother of All 
Experiments” - 1 subject, 2T scanner, TR=7s, 6 blocks of 
42 s rest, 42s auditory stimulation. 
Task: two-class intra-subject decoding: auditory vs rest.

2. GROUP COMPARISON: Buckner checkerboard - 41 
subjects from three groups, young (18-24), elderly healthy 
(66-89) and elderly demented (age 68-83). Four runs per 
subject, 128 volumes per run with TR=2.68s.
Task: classify young (n=28) versus old (n=30) group based 
on ‘first level’ beta maps

49
Original auditory data at www.fil.ion.ucl.ac.uk/
spm/data/auditory/ Original visual data at fmridc.org

[Buckner et al., 2001]

http://www.fil.ion.ucl.ac.uk/spm/data/auditory/
http://www.fil.ion.ucl.ac.uk/spm/data/auditory/
http://www.fil.ion.ucl.ac.uk/spm/data/auditory/
http://www.fil.ion.ucl.ac.uk/spm/data/auditory/
http://www.fil.ion.ucl.ac.uk/spm/data/auditory/
http://www.fil.ion.ucl.ac.uk/spm/data/auditory/
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The PRoNTo toolbox
Matlab code, open source, GUI / batch / scripting

Users can quickly test machine learning methods without coding

51

http://www.mlnl.cs.ucl.ac.uk/pronto/

http://www.mlnl.cs.ucl.ac.uk/pronto/
http://www.mlnl.cs.ucl.ac.uk/pronto/


Start PRoNTo
1. Make sure your path is setup properly

>> which spm
>> which pronto

2. Start PRoNTo

>> pronto

52
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Scikit-learn / niPy
A very good alternative for python fans is to 
use Scikit-learn + niPy. It has RF, Extra-trees, 
and others

For people that missed Gaël’s tutorial at 
PRNI 2011: http://nisl.github.io/

PyMVPA also has access to Extra-trees and 
RF

54

http://nisl.github.io
http://nisl.github.io


Conclusions
Tree ensembles can offer competitive decoding 
performance with SVMs, and are good for 
multimodal classification

They produce information maps which are 
typically sparser than L2 SVMs (is this good or 
bad?), and can have different interpretation

Implementations abound in the language of your 
choice, including R, Matlab, Python

So... take a walk in the forest for your next 
project
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Useful references - books
Criminisi, A. and Shotton, J. (eds) (2013). Decision forests 
for computer vision and medical image analysis, Springer

Hastie et al. (2011). The Elements of Statistical Learning, 
Springer.

MacKay, D.J.C. (2003). Information Theory, Inference, and 
Learning Algorithms, Cambridge University Press
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